

ผู้วิจัย
Wichayaporn Jantanan1, Natee Raikham1, Ronnason Chinram2, Aiyared Iampan3,*
บทคัดย่อ
ABSTRACT. In this paper, the notions of interior bases of ordered semigroups are introduced, and some examples are also presented. We describe a characterization when a non-empty subset of an ordered semigroup is an interior base of an ordered semigroup. Finally, a characterization when an interior base of an ordered semigroup is a subsemigroup of an ordered semigroup will be given.
บรรณานุกรม
References [1] N.G. Alimov, On ordered semigroups, Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950), 569-576. [2] C.G. Chehata, On an ordered semigroup, J. Lond. Math. Soc. s1-28 (1953), 353-356. https://doi.org/10.1112/jlms/s1-28.3.353. [3] T. Tamura, One-sided bases and translations of a semigroup, Math. Japon. 3 (1955), 137-141. [4] I. Fabrici, One-sided bases of semigroups, Mat. Casopis. 22 (1972), 286-290. [5] I. Fabrici, Two-sided bases of semigroups, Mat. Casopis. 25 (1975), 173-178. [6] T. Changphas, P. Sammaprab, On two-sided bases of an ordered semigroup, Quasigroups Related Syst. 22 (2014), 59-66. [7] P. Kummoon, T. Changphas, On bi-bases of a semigroup, Quasigroups Related Syst. 25 (2017), 87-94. [8] P. Kummoon, T. Changphas, On bi-bases of -semigroups, Thai J. Math. (Spec. Iss. Ann. Meet. Math.) (2018), 75-86. [9] N. Kehayopulu, Note on interior ideals, ideal elements in ordered semigroups, Sci. Math. 2 (1999), 407 409. [10] N. Kehayopulu, M. Tsingelis, On left regular ordered semigroups, Southeast Asian Bull. Math. 25 (2002), 609-615. [11] S. Thongrak, A. Iampan, Characterizations of ordered semigroups by the properties of their ordered ( , ) mn quasi-ideals, Palestine J. Math. 7 (2018), 299-306. [12] N. Kehayopulu, On completely regular ordered semigroups, Sci. Math. 1 (1998), 27-32. [13] S.K. Lee, J.H. Jung, On left regular po-semigroups, Commun. Korean Math. Soc. 13 (1998), 1-6.
หน่วยงานการอ้างอิง
มหาวิทยาลัยราชภัฏบุรีรัมย์
ความคิดเห็น