ผู้วิจัย
Wichayaporn Jantanan , Anusorn Simuen , Winita Yonthanthum and Ronnason Chinram.
บทคัดย่อ
Ideal theory plays an important role in studying in many algebraic structures, for example, rings, semigroups, semirings, etc. The algebraic structure Γ-semigroup is a generalization of the classical semigroup. Many results in semigroups were extended to results in Γ-semigroups. Many results in ideal theory of Γ-semigroups were widely investigated. In this paper, we first focus to study some novel ideals of Γ-semigroups. In Section 2, we define almost interior Γ-ideals and weakly almost interior Γ-ideals of Γ-semigroups by using the concept ideas of interior Γ-ideals and almost Γ-ideals of Γ-semigroups. Every almost interior Γ-ideal of a Γ-semigroup S is clearly a weakly almost interior Γ-ideal of S but the converse is not true in general. The notions of both almost interior Γ-ideals and weakly almost interior Γ-ideals of Γ-semigroups are generalizations of the notion of interior Γ-ideal of a Γ-semigroup S. We investigate basic properties of both almost interior Γ-ideals and weakly almost interior Γ-ideals of Γ-semigroups. The notion of fuzzy sets was introduced by Zadeh in 1965. Fuzzy set is an extension of the classical notion of sets. Fuzzy sets are somewhat like sets whose elements have degrees of membership. In the remainder of this paper, we focus on studying some novelties of fuzzy ideals in Γ-semigroups. In Section 3, we introduce fuzzy almost interior Γ-ideals and fuzzy weakly almost interior Γ-ideals of Γ-semigroups. We investigate their properties. Finally, we give some relationship between almost interior Γ-ideals [weakly almost interior Γ-ideals] and fuzzy almost interior Γ-ideals [fuzzy weakly almost interior Γ-ideals] of Γ-semigroups.
บรรณานุกรม
[1] Y. Al-Qudah, F. Yousafzai, M. M. Khalaf, M. Almousa, ”On (2; 2)-regular non-associative ordered semigroups via its semilattices and generated (generalized fuzzy) ideals,” Mathematics and Statistics, vol. 8, no. 3, pp. 353- 362. DOI: 10.13189/ms.2020.080315. [2] M. A. Ansari, M. R. Khan, ”Notes on (m, n) bi-Γ-ideal in Γ-semigroups,” Rend. Circ. Mat. Palermo, vol. 60, pp, 31-42, 2011. DOI: 10.1007/s12215-011-0024-8. [3] R. Chinram, C. Jirokul, ”On bi-Γ-ideal in Γ-semigroups,” Songklanakarin J. Sci. Technol., vol. 29, no. 1, pp. 231- 234, 2007. [4] R. Chinram, ”On quasi-Γ-ideals in Γ-semigroups,” Science Asia, vol. 32, no. 4, pp. 351-353. 2006. DOI: 10.2306/scienceasia1513-1874.2006.32.351. [5] O. Grosek, L. Satko, ”A new notion in the theory of semigroups,” Semigroup Forum, vol. 20, no. 1, pp. 233-240, 1980. DOI: 10.1007/BF02572683. [6] O. Grosek, L. Satko, ”On minimal A-ideals of semigroups,” Semigroup Forum, vol. 23, no. 1, pp. 283-295, 1981. DOI: 10.1007/BF02676653. [7] O. Grosek, L. Satko, ”Smallest A-ideals in semigroups,” Semigroup Forum, vol. 23, no. 1, pp. 297-309, 1981. DOI: 10.1007/BF02676654. [8] K. Hila, ”On regular, semiprime and quasireflexive Γ-semigroup and minimal quasi-ideals.” Lobachevskii J. Math., vol. 29, pp. 141-152, 2008. DOI: 10.1134/S1995080208030050. [9] N. Kaopusek, T. Kaewnoi, R. Chinram, ”On almost interior ideals and weakly almost interior ideals of semigroups,” J. Discrete Math. Sci. Cryptography, vol.23, no. 3, pp. 773-778, 2020. DOI: 10.1080/09720529.2019.1696917 [10] W. Krailoet, A. Simuen, R. Chinram, P. Petchkaew, ”A note on fuzzy almost interior ideals in semigroups.” Int. J. Math. Comput. Sci., vol. 16, no. 2, pp. 803-808, 2021. [11] N. Kuroki, ”On fuzzy ideals and fuzzy bi-ideals in semigroups,” Fuzzy Sets Syst., vol. 5, no. 2, pp. 203-215, 1981. DOI: 10.1016/0165-0114(81)90018-X. [12] J. N. Mordeson, D. S. Malik, N. Kuroki, ”Fuzzy semigroups,” Springer-Verlag, 2003. [13] P. M. Pu, Y. M. Liu, ”Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence,” J. Math. Anal. Appl., vol. 76, pp. 571-599, 1980. DOI: 10.1016/0022-247X(80)90048-7. [14] A. Rosenfeld, ”Fuzzy groups.” J. Math. Anal. Appl., vol. 35, pp. 512-517, 1971. DOI: 10.1016/0022- 247X(71)90199-5. [15] S. K. Sardar, B. Davvaz, S. K. Majumder. ”A study on fuzzy interior ideals of Γ-semigroups,” Comput. Math. Appl., vol. 60, no 1, pp 90-94, 2010. DOI: 10.1016/j.camwa.2010.04.033. [16] M. K. Sen, ”On Γ-semigroups,” Algebra and its applications (New Delhi, 1981), pp. 301-308, Lecture Notes in Pure and Appl. Math. vol. 91, Dekker, New York, 1984. [17] M. K. Sen, N. K. Saha, ”On Γ-semigroup-I,” Bull. Calcutta Math. Soc., vol. 78, no. 3, pp. 180-186, 1986. [18] A. Simuen, S. Abdullah, W. Yonthanthum, R. Chinram, ”Almost bi-Γ-Ideals and Fuzzy almost bi-Γ-Ideals of Γsemigroups,” Eur. J. Pure Appl. Math., vol. 13, no. 3, pp. 620-630., 2020. DOI: 10.29020/nybg.ejpam.v13i3.3759. [19] A. Simuen, K. Wattanatripop, R. Chinram, ”Characterizing Almost quasi-Γ-ideals and fuzzy almost quasi-Γ-ideals of Γ-semigroups,” Commun. Math. Appl., vol. 11, no. 2, pp. 233-240, 2020. DOI: 10.26713/cma.v11i2.1321. [20] S. Suebsung, T. Kaewnoi, R. Chinram, ”A note on almost hyperideals in semihypergroups,” Int. J. Math. Comput. Sci., vol. 15, no. 1, pp. 127-133, 2020. [21] S. Suebsung, K. Wattanatripop, R. Chinram, ”A-ideals and fuzzy A-ideals of ternary semigroups,” Songklanakarin J. Sci. Technol., vol. 41, no. 2, 299-304, 2019. DOI: 10.1080/16583655.2019.1659546. [22] K. Wattanatripop, T. Changphas, ”On left and right Aideals of a Γ-semigroup,” Thai J. Math., pp. 87-96, 2018. [23] K. Wattanatripop, R. Chinram, T. Changphas, ”QuasiA-ideals and fuzzy A-ideals in semigroups,” J. Discrete Math. Sci. Cryptography, vol. 21, no. 5, pp. 1131-1138, 2018. DOI: 10.1080/09720529.2018.1468608. [24] K. Wattanatripop, R. Chinram, T. Changphas, ”Fuzzy almost bi-ideals in semigroups,” Int. J. Math. Comput. Sci., vol. 13, pp. 51-58, 2018. [25] L. A. Zadeh, ”Fuzzy sets,” Inf Control, vol. 8, pp. 338- 353, 1965. DOI: 10.1016/S0019-9958(65)90241-X.
ความคิดเห็น