ON ORDERED LA-Γ-SEMIGROUPS CONTAINING TWO-SIDED BASES

WICHAYAPORN JANTANAN¹, SUPHATTRA SUPHASIT¹, INTUOON KAMKONG¹ SAMKHAN HOBANTHAD¹, RONNASON CHINRAM² AND THITI GAKETEM^{3,*}

¹Department of Mathematics Faculty of Science Buriram Rajabhat University Nai Muang, Muang, Buriram 31000, Thailand { wichayaporn.jan; samkhan.hb }@bru.ac.th; { pattra100342; intuoon.kk }@gmail.com

> ²Division of Computational Science Faculty of Science Prince of Songkla University Hat Yai, Songkhla 90110, Thailand ronnason.c@psu.ac.th

³Department of Mathematics School of Science University of Phayao 19, Moo 2, Tambon Mae Ka, Amphur Mueang, Phayao 56000, Thailand *Corresponding author: thiti.ga@up.ac.th

Received September 2021; accepted December 2021

ABSTRACT. Two-sided base is the smallest set generated two-sided ideal under some condition. The aim of this paper is to introduce the concept of two-sided bases of an ordered LA- Γ -semigroup with left identity. We give a characterization when a non-empty subset of an ordered LA- Γ -semigroup with left identity is a two-sided base of an ordered Γ -semigroup with left identity. Finally, a characterization when the complement of the union of all two-sided bases of an ordered Γ -semigroup with left identity is maximal will be given.

Keywords: Ordered LA- Γ -semigroups, Γ -ideals, Two-sided bases, Maximal proper Γ -ideals

1. Introduction. Based on the notion of two-sided ideals of a semigroup generated by a non-empty set, the concept of two-sided bases of a semigroup has been introduced and studied by Fabrici [1]. Later, Changpas and Kummoon [2] studied and described the structure of a Γ -semigroup containing two-sided bases. The structure of a Γ -semigroup was introduced by Sen [3] as a generalization of ternary semigroup and semigroup and the structure of an LA-semigroup was introduced by Kazim and Naseeruddin [4] as a generalization of commutative semigroups. The structure of an LA- Γ -semigroups (Γ -AG-groupoid), where Γ is a non-empty set, was given by Shah and Rehman [5]. The concept of an ordered LA- Γ -semigroups was introduced by Khan et al. [6]. This algebraic structure is a generalization of LA- Γ -semigroups, also see [7, 8]. The purpose of this paper is to introduce the concept of two-sided bases of an ordered LA- Γ -semigroup, and extend results in [1] to ordered LA- Γ -semigroups. In Section 2, we recall some basic definitions and results of ordered LA- Γ -semigroups. In Section 3, we define two-sided bases of ordered LA- Γ -semigroups and give their basic results. Section 4 is the main part of this paper, and we show remarkable results of two-sided bases of ordered LA-Γ-semigroups. Finally, Section 5 concludes the paper.

DOI: 10.24507/icicel.16.06.573

2. Ordered LA- Γ -Semigroups. We provide some definitions and results which will be used for this paper.

Definition 2.1. ([5]) Let S and Γ be non-empty sets, then S is called an LA- Γ -semigroup if there exists a mapping $S \times \Gamma \times S \to S$ written as (a, γ, b) and denoted by $a\gamma b$ such that S satisfied the left invertive law $(a\gamma b)\beta c = (c\gamma b)\beta a$ for all $a, b, c \in S$ and $\gamma, \beta \in \Gamma$.

Definition 2.2. ([5]) An element e of an LA- Γ -semigroup S is called a left identity if $e\gamma a = a$ for all $a \in S$ and $\gamma \in \Gamma$.

Lemma 2.1. ([5]) If S is an LA- Γ -semigroup with left identity e, then $S\Gamma S = S$ and $S = e\Gamma S = S\Gamma e$.

Proposition 2.1. ([9]) Let S be an LA- Γ -semigroup.

- (1) Every LA- Γ -semigroup with left identity satisfies the equalities $a\gamma(b\beta c) = b\gamma(a\beta c)$ and $(a\gamma b)\beta(c\alpha d) = (d\gamma c)\beta(b\alpha a)$ for all $a, b, c, d \in S$ and $\gamma, \beta, \alpha \in \Gamma$.
- (2) An LA- Γ -semigroup S is Γ -medial, i.e., $(a\gamma b)\beta(c\gamma d) = (a\gamma c)\beta(b\alpha d) = (a\gamma c)\beta(b\alpha d)$ for all $a, b, c, d \in S$ and $\gamma, \beta, \alpha \in \Gamma$.

Definition 2.3. ([6]) An ordered LA- Γ -semigroup S (abbreviated as a po-LA- Γ -semigroup) is a structure (S, Γ, \cdot, \leq) in which the following conditions hold.

- (1) (S, Γ, \cdot) is an LA- Γ -semigroup.
- (2) (S, \leq) is a poset (i.e., reflexive, anti-symmetric and transitive).
- (3) For all a, b and $x \in S$, $a \leq b$ implies $a\alpha x \leq b\alpha x$ and $x\alpha a \leq x\alpha b$ for all $\alpha \in \Gamma$.

Throughout this paper, unless stated otherwise, S stands for an ordered LA- Γ -semigroup. For a non-empty subsets A, B of an ordered LA- Γ -semigroup S, we defined

 $A\Gamma B = \{a\gamma b \mid a \in A, b \in B \text{ and } \gamma \in \Gamma\} \text{ and } (A] = \{t \in S \mid t \leq a, \text{ for some } a \in A\}.$

In particular, we write $B\Gamma a$ instead for $B\Gamma\{a\}$, $a\Gamma B$ instead for $\{a\}\Gamma B$, $a \cup B\Gamma a \cup a\Gamma s \cup (S\Gamma a)\Gamma S$ instead for $\{a\} \cup B\Gamma a \cup a\Gamma s \cup (S\Gamma a)\Gamma S$ and (a] instead for $\{a\}$.

Definition 2.4. [7] A non-empty subset A of an ordered LA- Γ -semigroup S is called an LA- Γ -subsemigroup of S if $A\Gamma A \subseteq A$.

Definition 2.5. [6] A non-empty subset A of an ordered LA- Γ -semigroup S is called a left (resp. right) Γ -ideal of S if (i) $S\Gamma A \subseteq A$ ($A\Gamma S \subseteq A$) and (ii) if $a \in A$ and $b \in S$ such that $b \leq a$, then $b \in A$. A non-empty subset A of an ordered LA- Γ -semigroup S is called a Γ -ideal of S if is both a left and right Γ -ideal of S.

Definition 2.6. A proper Γ -ideal A of an ordered LA- Γ -semigroup $S(A \neq S)$ is said to be maximal if for any Γ -ideal B of S, $A \subseteq B \subseteq S$ implies A = B or B = S.

Lemma 2.2. ([6]) Let S be an ordered LA- Γ -semigroup, and then the following statements are true.

(1) $A \subseteq (A]$, for all $A \subseteq S$.

- (2) If $A \subseteq B \subseteq S$ then $(A] \subseteq (B]$.
- (3) $(A|\Gamma(B)] \subseteq (A\Gamma B)$, for all subsets A, B of S.
- (4) $(A] = ((A)], \text{ for all } A \subseteq S.$
- (5) For every left (resp. right) Γ -ideal T of S, (T] = T.
- (6) $((A[\Gamma(B)]] \subseteq (A\Gamma B], \text{ for all subsets } A, B \text{ of } S.$
- (7) $(A \cup B] = (A] \cup (B]$, for all subsets A, B of S.
- (8) If A and B are two Γ -ideal of S, then the union $A \cup B$ is a Γ -ideal of S.

Lemma 2.3. Let S be an ordered LA- Γ -semigroup and A_i be a Γ -ideal of S for all $i \in I$. If $\bigcap_{i \in I} A_i \neq \emptyset$, then $\bigcap_{i \in I} A_i$ is a Γ -ideal of S. **Proof:** It is obvious.

Let A be a non-empty subset of an ordered LA- Γ -semigroup S. The intersection of all Γ -ideals of S containing A is the smallest Γ -ideal of S generated by A and is denoted by $(A)_T$.

Lemma 2.4. Let A be a non-empty subset of an ordered LA- Γ -semigroup S with left identity e. Then $(A)_T = (A \cup S\Gamma A \cup A\Gamma S \cup (S\Gamma A)\Gamma S]$.

Proof: Straightforward.

For an element $a \in S$, we write $(\{a\})_T$ by $(a)_T$ which is called the principal Γ -ideal of S generated by a. Thus, $(a)_T = (a \cup S\Gamma a \cup a\Gamma S \cup (S\Gamma a)\Gamma S]$.

Corollary 2.1. Let S be an ordered LA- Γ -semigroup with left identity. Then $(S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S]$ is a Γ -ideal of S for all $b \in S$.

3. Two-Sided Bases of Ordered LA- Γ -Semigroups. We begin this section with the definition of two-sided bases of an ordered LA- Γ -semigroup with left identity as follows.

Definition 3.1. Let S be an ordered LA- Γ -semigroup with left identity. A non-empty subset A of S is called a two-sided base of S if it satisfies the following two conditions. (1) $S = (A \cup S\Gamma A \cup A\Gamma S \cup (S\Gamma A)\Gamma S].$

(2) If B is a subset of A such that $S = (B \cup S\Gamma B \cup B\Gamma S \cup (S\Gamma B)\Gamma S]$, then B = A.

Example 3.1. Let $S = \{a, b, c, d, e\}$ and $\Gamma = \{\gamma\}$ with multiplication defined by

γ	a	b	c	d	c
a	a	a	a	a	a
b	a	b	c	d	c
c	a	c	b	c	d
d	a	d	c	b	c
c	a	$egin{array}{c} a \\ b \\ c \\ d \\ c \end{array}$	d	c	b

and $\leq = \{(a, a), (b, b), (c, c), (d, d), (c, c), (a, b), (a, c), (a, d), (a, c)\}$. Then S is an ordered LA- Γ -semigroup with left identity b. We have the two-sided bases of S are $A_1 = \{b\}$, $A_2 = \{c\}$, $A_3 = \{d\}$ and $A_4 = \{e\}$. However, $A_5 = \{a\}$ is not a two-sided base.

Example 3.2. Let $S = \{a, b, c, d, e\}$ and $\Gamma = \{\alpha\}$ with multiplication defined by

α	a	b	c	d	c
a	a	a	a	a	a
b	a	b	b	b	b
С	a	b	d	c	c
d	a	b	c	d	c
c	a a a a	b	c	c	d

and $\leq = \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, b)\}$. Then S is an ordered LA- Γ -semigroup with left identity d. We have the two-sided bases of S are $A_1 = \{c\}, A_2 = \{d\}$ and $A_3 = \{e\}$. However, $A_4 = \{a\}$ and $A_5 = \{b\}$ are not a two-sided bases.

To characterize when a non-empty subset of ordered LA- Γ -semigroup S with left identity is a two-sided base of the ordered LA- Γ -semigroup S with left identity we need the quasi-ordering defined as follows.

Definition 3.2. Let S be an ordered LA- Γ -semigroup. We define a quasi-ordering on S for any $a, b \in S$, $a \leq_I b \Leftrightarrow (a)_T \subseteq (b)_T$.

We write $a <_I b$ if $a \leq_I b$ but $a \neq b$, i.e., $a_T \subset b_T$.

The following example shows that the order \leq_I defined above is not, in general, a partial order.

Example 3.3. From Example 3.2, we have that $(c)_T \subseteq (d)_T$ (i.e., $c \leq_I d$) and $(d)_T \subseteq (c)_T$ (i.e., $d \leq_I c$), but $c \neq d$. Thus, \leq_I is not a partial order on S.

Lemma 3.1. Let S be an ordered LA- Γ -semigroup. For any $a, b \in S$, if $a \leq b$, then $a \leq_I b$.

Proof: Let $a, b \in S$ such that $a \leq b$. We will show that $a \leq_I b$, i.e., $(a)_T \subseteq (b)_T$. Let $x \in (a)_T$. Since $x \in (a)_T = (a \cup S\Gamma a \cup a\Gamma S \cup (S\Gamma a)\Gamma S], x \leq y$ for some $y \in a \cup S\Gamma a \cup a\Gamma S \cup (S\Gamma a)\Gamma S$. There are four cases to consider.

Case 1: y = a. Then $x \le a \le b$, so $x \le b$ where $b \in b \cup S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S$. We have that $x \in (b \cup S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S]$; thus, $x \in (b)_T$. So $a \in (b)_T$.

Case 2: $y \in S\Gamma a$. Then $y = s\gamma a$ for some $s \in S$, $\gamma \in \Gamma$. Since $a \leq b$, then $s\gamma a \leq s\gamma b$ and $s\gamma b \in S\Gamma b \subseteq b \cup S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S$. Since $x \leq y \leq s\gamma b$ where $s\gamma b \in b \cup S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S$, $x \in (b)_T$. So $S\Gamma a \subseteq (b)_T$.

Case 3: $y \in a\Gamma S$. Then $y = a\gamma s$ for some $s \in S$, $\gamma \in \Gamma$. Since $a \leq b$, then $a\gamma s \leq b\gamma s$ and $b\gamma s \in b\Gamma S \subseteq b \cup S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S$. Since $x \leq y \leq b\gamma s$ where $b\gamma s \in b \cup S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S$, $x \in (b)_T$. So $a\Gamma S \subseteq (b)_T$.

Case 4: $y \in (S\Gamma a)\Gamma S$. Then $y = (s_1\gamma a)\beta s_2$ for some $s_1, s_2 \in S$, $\gamma, \beta \in \Gamma$. Since $a \leq b$, then $s_1\gamma a \leq s_1\gamma b$ and $(s_1\gamma a)\beta s_2 \leq (s_1\gamma b)\beta s_2$ where $(s_1\gamma b)\beta s_2 \in (S\Gamma b)\Gamma S \subseteq b \cup S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S$. Since $x \leq y \leq (s_1\gamma b)\beta s_2$ where $(s_1\gamma b)\beta s_2 \in (S\Gamma b)\Gamma S \subseteq b \cup S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S$. Since $x \leq y \leq (s_1\gamma b)\beta s_2$ where $(s_1\gamma b)\beta s_2 \in (S\Gamma b)\Gamma S \subseteq b \cup S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S$, $x \in (b)_T$. So $(S\Gamma a)\Gamma S \subseteq (b)_T$. Hence $a \cup S\Gamma a \cup a\Gamma S \cup (S\Gamma a)\Gamma S \subseteq (b)_T$ and so $(a)_T = (a \cup S\Gamma a \cup a\Gamma S \cup (S\Gamma a)\Gamma S] \subseteq ((b)_T] = (b)_T$. Therefore, $(a)_T \subseteq (b)_T$, i.e., $a \leq_I b$.

Lemma 3.2. Let A be a two-sided base of an ordered LA- Γ -semigroup S with left identity and let $a, b \in A$. If $a \in (S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S]$, then a = b.

Proof: Assume that $a, b \in A$ such that $a \in (S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S]$, and suppose that $a \neq b$. Let $B = A \setminus \{a\}$. Since $a \neq b$, $b \in B$. To show that $(A)_T \subseteq (B)_T$, we let $x \in (A \cup S\Gamma A \cup A\Gamma S \cup (S\Gamma A)\Gamma S]$. Then $x \leq z$ for some $z \in A \cup S\Gamma A \cup A\Gamma S \cup (S\Gamma A)\Gamma S$. There are four cases to consider.

Case 1: $z \in A$. If $z \neq a$, then $z \in B \subseteq (B \cup S\Gamma B \cup B\Gamma S \cup (S\Gamma B)\Gamma S]$. Since $x \leq z$ and $z \in (B \cup S\Gamma B \cup B\Gamma S \cup (S\Gamma B)\Gamma S]$, $x \in ((B \cup S\Gamma B \cup B\Gamma S \cup (S\Gamma B)\Gamma S]) = (B \cup S\Gamma B \cup B\Gamma S \cup (S\Gamma B)\Gamma S]$. Thus, $x \in (B)_T$. If z = a, then by assumption we have $z = a \in (S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S] \subseteq (B \cup S\Gamma B \cup B\Gamma S \cup (S\Gamma B)\Gamma S]$. Since $x \leq z$ and $z \in (B \cup S\Gamma B \cup B\Gamma S \cup (S\Gamma B)\Gamma S]$, then $x \in ((B \cup S\Gamma B \cup B\Gamma S \cup (S\Gamma B)\Gamma S)] = (B \cup S\Gamma B \cup B\Gamma S \cup (S\Gamma B)\Gamma S]$. So $x \in (B)_T$.

Case 2: $z \in S\Gamma A$. Then $z = s\gamma c$ for some $s \in S$, $\gamma \in \Gamma$ and $c \in A$. If $c \neq a$, then $z = s\gamma c \in S\Gamma B \subseteq (B)_T$. Since $x \leq z$ and $z \in (B)_T$, we have $x \in (B)_T$. If c = a, then $z = s\gamma a \in S\Gamma(S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S]$. Since $(S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S]$ is a Γ -ideal of S for all $b \in S$, $z \in (S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S] \subseteq (B \cup S\Gamma B \cup B\Gamma S \cup (S\Gamma B)\Gamma S] = (B)_T$. Since $x \leq z$ and $z \in (B)_T$, we have $x \in (B)_T$.

Case 3: $z \in A\Gamma S$. Then $z = c\gamma s$ for some $c \in A$, $\gamma \in \Gamma$ and $s \in S$. If $c \neq a$, then $z = c\gamma s \in B\Gamma S \subseteq (B)_T$. Since $x \leq z$ and $z \in (B)_T$, we have $x \in (B)_T$. If c = a, then $z = a\gamma s \in (S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S]\Gamma S$. Since $(S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S]$ is a Γ -ideal of S for all $b \in S$, $z \in (S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S] \subseteq (B)_T$. Since $x \leq z$ and $z \in (B)_T$, $x \in (B)_T$.

Case 4: $z \in (S\Gamma A)\Gamma S$. Then $z = (s_1\gamma c)\beta s_2$ for some $s_1, s_2 \in S$, $\gamma, \beta \in \Gamma$ and $c \in A$. If $c \neq a$, then $z = (s_1\gamma c)\beta s_2 \in (S\Gamma B)\Gamma S \subseteq (B)_T$. Since $x \leq z$ and $z \in (B)_T$, we have $x \in (B)_T$. If c = a, then $z = (s_1\gamma a)\beta s_2 \in (S\Gamma(S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S])\Gamma S$. Since $(S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S]$ is a Γ -ideal of S for all $b \in S$, $z \in (S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S]\Gamma S \subseteq (S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S] \subseteq (B)_T$. Since $x \leq z$ and $z \in (B)_T$, $x \in (B)_T$. Thus, $(A)_T \subseteq (B)_T$. By $S = (A)_T \subseteq (B)_T \subseteq S$, hence $(B)_T = S$. This is a contradiction. Therefore, a = b. \Box

4. Main Results. In this section, the algebraic structure of an ordered LA- Γ -semigroup with left identity containing two-sided bases will be presented.

Theorem 4.1. A non-empty subset A of an ordered LA- Γ -semigroup S with left identity, is a two-sided base of S if and only if A satisfies the following two conditions:

- (1) for any $x \in S$ there exists $a \in A$ such that $x \leq_I a$;
- (2) for any $a, b \in A$, if $a \neq b$, then neither $a \leq_I b$ nor $b \leq_I a$.

Proof: Assume that A is a two-sided base of S. Then $S = (A)_T$. Let $x \in S$. Since $x \in S = (A \cup S \Gamma A \cup A \Gamma S \cup (S \Gamma A) \Gamma S]$, we have $x \leq y$ for some $y \in A \cup S \Gamma A \cup A \Gamma S \cup (S \Gamma A) \Gamma S$. There are four cases to consider.

Case 1: $y \in A$. Since $x \leq y$, by Lemma 3.1, we have that $x \leq_I y$.

Case 2: $y \in S\Gamma A$. Then $y = s\gamma a$ for some $s \in S$, $\gamma \in \Gamma$ and $a \in A$. By $y = s\gamma a \in S\Gamma a \subseteq (a)_T$, $S\Gamma y \subseteq S\Gamma(S\Gamma a) = (S\Gamma S)\Gamma(S\Gamma a) = (a\Gamma S)\Gamma(S\Gamma S) = (a\Gamma S)\Gamma S = (S\Gamma S)\Gamma a = S\Gamma a \subseteq (a)_T$, $y\Gamma S \subseteq (S\Gamma a)\Gamma S \subseteq (a)_T$ and $(S\Gamma y)\Gamma S \subseteq (S\Gamma (S\Gamma a))\Gamma S = ((S\Gamma S)\Gamma(S\Gamma a))\Gamma S = ((a\Gamma S)\Gamma(S\Gamma S))\Gamma S = ((a\Gamma S)\Gamma(S\Gamma S))\Gamma S = ((S\Gamma S)\Gamma a)\Gamma S = (S\Gamma a)\Gamma S \subseteq (a)_T$. Then $y \cup S\Gamma y \cup y\Gamma S \cup (S\Gamma y)\Gamma S \subseteq (a)_T$, and so $(y)_T = (y \cup S\Gamma y \cup y\Gamma S \cup (S\Gamma y)\Gamma S] \subseteq ((a)_T] = (a)_T$, i.e., $y \leq_I a$. Since $x \leq y$, by Lemma 3.1, we have $x \leq_I y$. So $x \leq_I y \leq_I a$.

Case 3: $y \in A\Gamma S$. Then $y = a\gamma s$ for some $a \in A$, $\gamma \in \Gamma$ and $s \in S$. By $y = a\gamma s \in a\Gamma S \subseteq (a)_T$, $S\Gamma y \subseteq S\Gamma(a\Gamma S) = a\Gamma(S\Gamma S) = a\Gamma S \subseteq (a)_T$, $y\Gamma S \subseteq (a\Gamma S)\Gamma S = (S\Gamma S)\Gamma a = S\Gamma a \subseteq (a)_T$ and $(S\Gamma y)\Gamma S \subseteq (S\Gamma(a\Gamma S))\Gamma S = (a\Gamma(S\Gamma S))\Gamma S = (a\Gamma S)\Gamma S = (S\Gamma S)\Gamma a = S\Gamma a \subseteq (a)_T$. Then $y \cup S\Gamma y \cup y\Gamma S \cup \Gamma S \subseteq (a)_T$, and so $(y)_T = (y \cup S\Gamma y \cup y\Gamma S \cup (S\Gamma y)\Gamma S] \subseteq ((a)_T] = (a)_T$, i.e., $y \leq_T a$. Since $x \leq y$, by Lemma 3.1, we have $x \leq_I y$. So $x \leq_I y \leq_I a$. Thus, $x \leq_I a$.

Case 4: $y \in (S\Gamma A)\Gamma S$. Then $y = (s_1\gamma a)\beta s_2$ for some $s_1, s_2 \in S, \gamma, \beta \in \Gamma$ and $a \in A$. By $y = (s_1\gamma a)\beta s_2 \in (S\Gamma a)\Gamma S \subseteq (a)_T, S\Gamma y \subseteq S\Gamma((S\Gamma a)\Gamma S) = (S\Gamma a)\Gamma(S\Gamma S) = (S\Gamma a)\Gamma S \subseteq (a)_T, y\Gamma S \subseteq ((S\Gamma a)\Gamma S)\Gamma S = (S\Gamma S)\Gamma(S\Gamma a) = (a\Gamma S)\Gamma(S\Gamma S) = (a\Gamma S)\Gamma S = (S\Gamma S)\Gamma a = S\Gamma a \subseteq (a)_T$ and $(S\Gamma y)\Gamma S \subseteq (S\Gamma((S\Gamma a)\Gamma S))\Gamma S = ((S\Gamma a)\Gamma(S\Gamma S))\Gamma S = ((S\Gamma a)\Gamma S)\Gamma S = (S\Gamma S)\Gamma(S\Gamma a) = (a\Gamma S)\Gamma(S\Gamma a) = (a\Gamma S)\Gamma(S\Gamma S) = (a\Gamma S)\Gamma S = (S\Gamma S)\Gamma a = S\Gamma a \subseteq (a)_T$. Then $y \cup S\Gamma y \cup y\Gamma S \cup (S\Gamma y)\Gamma S \subseteq (a)_T$, and so $(y)_T = (y \cup S\Gamma y \cup y\Gamma S \cup (S\Gamma y)\Gamma S] \subseteq ((a)_T] = (a)_T$, i.e., $y \leq_I a$. Since $x \leq y$, by Lemma 3.1, we have $x \leq_I y$. So $x \leq_I y \leq_I a$. Thus, $x \leq_I a$.

Hence the condition (1) holds. Next, let $a, b \in A$ such that $a \neq b$. Suppose $a \leq_I b$. Set $B = A \setminus \{a\}$. Then $b \in B$ and $B \subseteq A$. Let $x \in S$. By condition (1), there exists $c \in A$ such that $x \leq_I c$, i.e., $(x)_T \subseteq (c)_T$. There are two cases to consider. If $c \neq a$, then $c \in B$. So $x \in (x)_T \subseteq (c)_T \subseteq (B)_T$. If c = a, then $x \leq_I a \leq b_I$ and $x \leq_I b$, i.e., $(x)_T \subseteq (b)_T$. So $x \in (x)_T \subseteq (b)_T \subseteq (B)_T$. Thus, $S \subseteq (B)_T$ and so $S = (B)_T$. This is a contradiction. Hence $a \leq_I b$ is false. The case $b \leq_I a$ proved similarly. Hence the condition (2) holds.

Conversely, assume that the conditions (1) and (2) hold. We will show that A is a two-sided base of S. To show that $S = (A)_T$, let $x \in S$, by condition (1), there exists $a \in A$ such that $x \leq_I a$. Then $x \in (x)_T \subseteq (a)_T \subseteq (A)_T$. So $S \subseteq (A)_T$ and clearly $(A)_T \subseteq S$. Thus, $S = (A)_T$. Next, to show that A is a minimal subset of S with the property $S = (A)_T$, let $B \subset A$ such that $S = (B)_T$. Then there exists $a \in A$ and $a \notin B$. Since $a \in A$, $a \in S = (B)_T$. We will show that $a \notin (B]$. If $a \in (B]$, then $a \leq y$ for some $y \in B$, by Lemma 3.1, $a \leq_I y$. This is a contradiction. So $a \notin (B]$. Thus, $a \in (S\Gamma B \cup B\Gamma S \cup (S\Gamma B)\Gamma S]$. Since $a \in (S\Gamma B \cup B\Gamma S \cup (S\Gamma B)\Gamma S)$. There are three cases to consider.

Case 1: $c \in S\Gamma B$. Then $c = s\gamma b_1$ for some $s \in S$, $\gamma \in \Gamma$ and $b_1 \in B$. Since $a \leq c$ and $c = s\gamma b_1 \in S\Gamma b_1 \subseteq b_1 \cup S\Gamma b_1 \cup b_1\Gamma S \cup (S\Gamma b_1)\Gamma S$, $a \in (b_1 \cup S\Gamma b_1 \cup b_1\Gamma S \cup (S\Gamma b_1)\Gamma S] = (b_1)_T$. It follows that $(a)_T \subseteq (b_1)_T$. Thus, $a \leq_I b_1$ where $a, b_1 \in A$. This is a contradiction.

Case 2: $c \in B\Gamma S$. Then $c = b_2\gamma s$ for some $s \in S$, $\gamma \in \Gamma$ and $b_2 \in B$. Since $a \leq c$ and $c = b_2\gamma s \in b_2\Gamma S \subseteq b_2 \cup S\Gamma b_2 \cup b_2\Gamma S \cup (S\Gamma b_2)\Gamma S$, $a \in (b_2 \cup S\Gamma b_2 \cup b_2\Gamma S \cup (S\Gamma b_2)\Gamma S] = (b_2)_T$. It follows that $(a)_T \subseteq (b_2)_T$. Thus, $a \leq_I b_2$ where $a, b_2 \in A$. This is a contradiction.

Case 3: $c \in (S\Gamma B)\Gamma S$. Then $c = (s_1\gamma b_3)\beta s_2$ for some $s_1, s_2 \in S$, $\gamma, \beta \in \Gamma$ and $b_3 \in B$. Since $a \leq c$ and $c = (s_1\gamma b_3)\beta s_1 \in (S\Gamma b_3)\Gamma S \subseteq b_3 \cup S\Gamma b_3 \cup b_3\Gamma S \cup (S\Gamma b_3)\Gamma S$, $a \in (b_3 \cup S)$ $S\Gamma b_3 \cup b_3\Gamma S \cup (S\Gamma b_3)\Gamma S = (b_3)_T$. It follows that $(a)_T \subseteq (b_3)_T$. Thus, $a \leq_I b_3$ where $a, b_3 \in A$. This is a contradiction.

Therefore, A is a two-sided base of S. The proof is completed.

Theorem 4.2. Let A be a two-sided base of an ordered LA- Γ -semigroup S with left identity, such that $(a)_T = (b)_T$, for some a in A and b in S. If $a \neq b$, then S contains at the least two two-sided bases.

Proof: Assume that $a \neq b$. Suppose that $b \in A$. Since $a \neq b$ and $a \in (a)_T = (b)_T = (b \cup S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S] = (b] \cup (S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S]$, $a \in (b]$ or $a \in (S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S]$. If $a \in (b]$, then $a \leq b$, by Lemma 3.1, we have $a \leq_I b$ where $a, b \in A$. This is a contradiction. So $a \in (S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S]$. By Lemma 3.2, a = b. This is a contradiction. Thus, $b \in S \setminus A$. Setting $B = (A \setminus \{a\}) \cup \{b\}$, then $B \neq A$. We will show that B is a two-sided base of S using Theorem 4.1. First, let $x \in S$. Since A is a two-sided base of S, by Theorem 4.1(1), $x \leq_I c$ for some $c \in A$. If $c \neq a$, then $c \in B$. If c = a, then $(c)_T = (a)_T$. Since $(a)_T = (b)_T$, we have $(c)_T = (b)_T$, i.e., $c \leq_I b$. So $x \leq_I c \leq_I b$. Thus, $x \leq_I b$ where $b \in B$. Next, let $c_1, c_2 \in B$ such that $c_1 \neq c_2$. We will show that neither $c_1 \leq_I c_2$ nor $c_2 \leq_I c_1$. Then there are four cases to consider.

Case 1: $c_1 \neq b$ and $c_2 \neq b$. Then $c_1, c_2 \in A$. Since A is a two-sided base of S, then neither $c_1 \leq_I c_2$ nor $c_2 \leq_I c_1$.

Case 2: $c_1 \neq b$ and $c_2 = b$. Then $(c_2)_T = (b)_T$. If $c_1 \leq_I c_2$, then $(c_1)_T \subseteq (c_2)_T = (b)_T = (a)_T$. Thus, $c_1 \leq_I a$ where $c_1, a \in A$. This is contradiction. If $c_2 \leq_I c_1$, then $(a)_T = (b)_T = (c_2)_T \subseteq (c_1)_T$. Thus, $a \leq_I c_1$ where $c_1, a \in A$. This is a contradiction.

Case 3: $c_1 = b$ and $c_2 \neq b$. Then $(c_1)_T = (b)_T$. If $c_1 \leq_I c_2$, then $(a)_T = (b)_T = (c_1)_T \subseteq (c_2)_T$. Thus, $a \leq_I c_2$ where $c_2, a \in A$. This is contradiction. If $c_2 \leq_I c_1$, then $(c_2)_T \subseteq (c_1)_T = (b)_T = (a)_T$. Thus, $c_2 \leq_I a$ where $c_2, a \in A$. This is a contradiction.

Case 4: $c_1 = b$ and $c_2 = b$. This is impossible.

Therefore, B is a two-sided base of S.

The following corollary follows directly from Theorem 4.2.

Corollary 4.1. Let A be a two-sided base of an ordered LA- Γ -semigroup S with left identity, and let $a \in A$. If $(x)_T = (a)_T$ for some $x \in S$, $x \neq a$, then x belongs to some two-sided base of S, which is different from A.

Theorem 4.3. Let A and B be two-sided bases of ordered LA- Γ -semigroup S with left identity. Then A and B have the same cardinality.

Proof: Let A and B be two-sided bases of S. Let $a \in A$. Since B is a two-sided base of S, by Theorem 4.1(1), there exists $b \in B$ such that $a \leq I b$. Similarly, since A is a twosided base of S, there exists $a^* \in A$ such that $b \leq_I a^*$. So $a \leq_I b \leq_I a^*$, and $a \leq_I a^*$. By Theorem 4.1(2), $a = a^*$. Hence $(a)_T = (b)_T$. Now, define a mapping $\varphi : A \to B$; $\varphi(a) = b$ for all $a \in A$. First, to show that φ is well-defined, let $a_1, a_2 \in A$ such that $a_1 = a_2$, $\varphi(a_1) = b_1$, and $\varphi(a_2) = b_2$ for some $b_1, b_2 \in B$. Then $(a_1)_T = (b_1)_T$ and $(a_2)_T = (b_2)_T$. Since $a_1 = a_2$, $(a_1)_T = (a_2)_T$. Thus, $(a_1)_T = (a_2)_T = (b_1)_T = (b_2)_T$, so $b_1 \leq I b_2$ and $b_2 \leq_I b_1$. By Theorem 4.1(2), $b_1 = b_2$. Hence $\varphi(a_1) = \varphi(a_2)$. Therefore, φ is welldefined. Next, to show that φ is one-to-one, let $a_1, a_2 \in A$ such that $\varphi(a_1) = \varphi(a_2)$. Then $\varphi(a_1) = \varphi(a_2) = b$ for some $b \in B$. We have $(a_1)_T = (a_2)_T = (b)_T$. Since $(a_1)_T = (a_2)_T$, $a_1 \leq_I a_2$ and $a_2 \leq_I a_1$. Thus, $a_1 = a_2$. Therefore, φ is one-to-one. Finally, to show that φ is onto, let $b \in B$, and then there exists $a \in A$ such that $b \leq_I a$. Similarly, there exists $b^* \in B$ such that $a \leq_I b^*$. Then $b \leq_I a \leq_I b^*$, i.e., $b \leq_I b^*$. By Theorem 4.1(2), $b = b^*$. So $b \leq_I a$ and $a \leq_I b$, i.e., $(b)_T = (a)_T$ and $(a)_T = (b)_T$. Thus, $(a)_T = (b)_T$. Therefore, φ is onto. This completes the proof.

If a two-sided base of an ordered LA- Γ -semigroup S with left identity, is a Γ -ideal of S, then $S = (A \cup S \Gamma A \cup A \Gamma S \cup (S \Gamma A) \Gamma S] \subseteq (A \cup A \cup A \cup A) = (A] = A$. Hence S = A. The

converse statement is obvious. Then we conclude that a two-sided base A of an ordered LA- Γ -semigroup S with left identity, is a Γ -ideal of S if and only if A = S.

In Example 3.1, it is observed that not every two-sided base of an ordered LA- Γ -semigroup S with left identity, is an LA- Γ -subsemigroup. The following theorem gives necessary and sufficient conditions of a two-sided base of an ordered LA- Γ -semigroup S with left identity, to be an LA- Γ -subsemigroup.

Theorem 4.4. A two-sided base A of an ordered LA- Γ -semigroup S with left identity, is an LA- Γ -subsemigroup if and only if $A = \{a\}$ with $a\gamma a = a$ for all $\gamma \in \Gamma$.

Proof: Assume that A is an LA- Γ -subsemigroup of S. Let $a, b \in A$ and $\gamma \in \Gamma$. Since A is an LA- Γ -subsemigroup S, we have $a\gamma b \in A$. Set $a\gamma b = c$. Then $c = a\gamma b \in$ $S\Gamma b \subseteq (S\Gamma b \cup b\Gamma S \cup S\Gamma b\Gamma S]$. By Lemma 3.2, we have c = b. So $a\gamma b = b$. Similarly, $c = a\gamma b \in a\Gamma S \subseteq (S\Gamma a \cup a\Gamma S \cup S\Gamma a\Gamma S]$. By Lemma 3.2, we have c = a. So $a\gamma b = a$. Thus, a = b. Therefore, $A = \{a\}$ with $a\gamma a = a$. The converse statement is clear.

The union of all two-sided bases of an ordered LA- Γ -semigroup S with left identity is denoted by C.

Theorem 4.5. Let S be an ordered LA- Γ -semigroup with left identity. Then $S \setminus C = \emptyset$ or a Γ -ideal of S.

Proof: Assume that $S \setminus C \neq \emptyset$. We will show that $S \setminus C$ is a Γ -ideal of S. Let $x \in S$, $\gamma \in \Gamma$ and $a \in S \setminus C$. To show that $x\gamma a \in S \setminus C$ and $a\gamma x \in S \setminus C$, suppose that $x\gamma a \notin S \setminus C$. Then $x\gamma a \in C$. Thus, $x\gamma a \in A$ for a two-sided base A of S. Let $x\gamma a = b$ for some $b \in A$. Since $b = x\gamma a \in S\Gamma a \subseteq (a)_T$, $b \in (a)_T$. It follows that $(b)_T \subseteq (a)_T$. If $(b)_T = (a)_T$, by Corollary 4.1, we have that $a \in C$. This is a contradiction. Thus, $(b)_T \subset (a)_T$, i.e., $b <_I a$. Since A is a two-sided base of S, by Theorem 4.1(1), there exists $b_1 \in A$ such that $a \leq b_1$. Since $b <_I a \leq_I b_1$, $b \leq_I b_1$ where $b, b_1 \in A$. This is a contradiction. Thus, $x\gamma a \in S \setminus C$. Similarly, we can show that $a\gamma x \in S \setminus C$. Next, to show that if $a_1 \in S \setminus C$ and $a_2 \in S$ such that $a_2 \leq a_1$, then $a_2 \in S \setminus C$. Suppose that $a_2 \in C$. Then $a_2 \in B$ for a two-sided base B of S. Since B is a two-sided base of S, by Theorem 4.1(1), there exists $a_3 \in B$ such that $a_1 \leq_I a_3$. Since $a_2 \leq a_1$, by Lemma 3.1, $a_2 \leq_I a_1$. We have that $a_2 \leq_I a_3$ where $a_2, a_3 \in B$. This is a contradiction. Thus, $a_2 \notin C$, i.e., $a_2 \in S \setminus C$. Therefore, $S \setminus C$ is a Γ -ideal of S.

Let M^* be a proper Γ -ideal of an ordered LA- Γ -semigroup S with left identity, containing every proper Γ -ideal of S.

Theorem 4.6. Let S be an ordered LA- Γ -semigroup with left identity, and $\emptyset \neq C \subset S$. Then $S \setminus C = M^*$ if and only if every two-sided base of S is one-element base.

Proof: Assume that $S \setminus C = M^*$. Then $S \setminus C$ is a maximal proper Γ -ideal of S. We will show that for every $a \in C$, $C \subseteq (a)_T$. Let $a \in C$. Suppose $C \not\subseteq (a)_T$. Since $C \not\subseteq (a)_T$ and $\emptyset \neq C \subset S$, $(a)_T$ is a proper Γ -ideal of S. Thus, $a \in (a)_T \subseteq M^* = S \setminus C$, and so $a \in S \setminus C$, i.e., $a \notin C$. This is a contradiction. Hence $C \subseteq (a)_T$ for every $a \in C$. We will show that for every $a \in C$, $S \setminus C \subseteq (a)_T$. Suppose that $S \setminus C \not\subset (a^*)_T$ for some $a^* \in C$. Then $(a^*)_T \neq S$, and so $(a^*)_T$ is a proper Γ -ideal of S. Thus, $a^* \in (a^*)_T \subseteq M^* = S \setminus C$, and so $a^* \in S \setminus C$, i.e., $a^* \notin C$. This is a contradiction. Hence $S \setminus C \subseteq (a)_T$ for every $a \in C$. Since $S \setminus C \subseteq (a)_T$ and $C \subseteq (a)_T$ for every $a \in C$, we have $S = (S \setminus C) \cup C \subseteq (a)_T \subseteq S$. So $S = (a)_T$ for every $a \in C$. Thus, $\{a\}$ is a two-sided base of S. Next, let A be a two-sided base of S. We will show that a = b for every $a, b \in A$. Suppose that there exists $a, b \in A$ such that $a \neq b$. Since A is a two-sided base of S, $a \in A \subseteq C$ and $a \in C$. So $S = (a)_T$. Since $a \neq b$ and $b \in S = (a \cup S\Gamma a \cup a\Gamma S \cup (S\Gamma a)\Gamma S] = (a] \cup (S\Gamma a \cup a\Gamma S \cup (S\Gamma a)\Gamma S]$, $b \in (a]$ or $b \in (S\Gamma a \cup a\Gamma S \cup (S\Gamma a)\Gamma S]$. If $b \in (a]$, then $b \leq a$ by Lemma 3.1, $b \leq_I a$. This is a contradiction. So $b \in (S\Gamma a \cup a\Gamma S \cup (S\Gamma a)\Gamma S]$. By Lemma 3.2, a = b. This is a contradiction. Therefore, every two-sided base of S is one-element base. Conversely, assume that every two-sided base of S is a one-element base. Then $S = (a)_T$ for every $a \in C$. To show that $S \setminus C = M^*$, since $\emptyset \neq C \subset S$, $\emptyset \neq S \setminus C \subset S$. By Theorem 4.5, $S \setminus C$ is a proper Γ -ideal of S. Next, let M be a proper Γ -ideal of S such that $S \setminus C \subset M \subset S$. Since $S \setminus C \subset M$, there exists $x \in M$ such that $x \notin S \setminus C$, i.e., $x \in C$. We have $x \in M \cap C$. So $M \cap C \neq \emptyset$. Let $b \in M \cap C$. Since $b \in M$, $S\Gamma b \subseteq S\Gamma M \subseteq M$, $b\Gamma S \subseteq M\Gamma S \subseteq M$ and $(S\Gamma b)\Gamma S \subseteq (S\Gamma M)\Gamma S \subseteq M\Gamma S \subseteq M$, $b \cup S\Gamma b \cup b\Gamma S \cup (S\Gamma b)\Gamma S \subseteq M$. We have $(b)_T = (b \bigcup S\Gamma b \cup b\Gamma S \bigcup (S\Gamma b)\Gamma S] \subseteq (M] = M$. Since $b \in C$, by assumption, we have $(b)_T = S$. So $S = (b)_T \subseteq M \subset S$. Thus, M = S. This is a contradiction. Hence $S \setminus C$ is a maximal proper Γ -ideal of S. Finally, let B be a Γ -ideal of S such that $B \not\subseteq S \setminus C$. Since $B \not\subseteq S \setminus C$, there exists $x \in B$ such that $x \notin S \setminus C$, i.e., $x \in C$. So $B \cap C \neq \emptyset$. Let $c \in B \cap C$. Since $c \in B$, $S\Gamma c \subseteq S\Gamma B \subseteq B$, $c\Gamma S \subseteq B\Gamma S \subseteq B$ and $(S\Gamma c)\Gamma S \subseteq (S\Gamma B)\Gamma S \subseteq B\Gamma S \subseteq B$, $c \cup S\Gamma c \cup c\Gamma S \cup (S\Gamma c)\Gamma S \subseteq B$. We have $(c)_T = (c \cup S\Gamma c \cup c\Gamma S \cup (S\Gamma c)\Gamma S] \subseteq (B] = B$. Since $c \in C$, $S = (c)_T \subseteq B \subseteq S$. Thus, S = B. Therefore, $S \setminus C = M^*$.

Theorem 4.7. Let S be an ordered LA- Γ -semigroup with left identity. If e is a left identity of S, then $\{e\}$ is a two-sided base of S.

Proof: Assume that e is a left identity of S. Let $A = \{e\}$. We will show that A is a two-sided base of S. To show that $S = (A)_T$, since e is a left identity of S, by Lemma 2.1, we have $S = e\Gamma S = S\Gamma e$. Since $S = S\Gamma e$, we have $(S\Gamma e)\Gamma S = (S\Gamma e)\Gamma(S\Gamma e) = (S\Gamma S)\Gamma(e\Gamma e) = S\Gamma e$. So $e \cup S\Gamma e \cup e\Gamma S \cup (S\Gamma e)\Gamma e = S$. Thus, $(A)_T = (e \cup S\Gamma e \cup e\Gamma S \cup (S\Gamma e)\Gamma S] = (S] = S$. Hence $(A)_T = S$. Clearly, A is a minimal subset of S with the property $S = (A)_T$. Therefore, A is a two-sided base of S.

In Examples 3.1 and 3.2, it is observed that every two-sided base of an ordered LA- Γ -semigroup with left identity is one-element base. This leads to proving the following corollary. From Theorem 4.3 and Theorem 4.7, we can easily obtain the following result.

Corollary 4.2. Let S be an ordered LA- Γ -semigroup with left identity. Then every twosided base of S is one-element base.

In Example 3.2, we have the all two-sided bases of S are $A_1 = \{c\}, A_2 = \{d\}$ and $A_3 = \{e\}$. Then $S \setminus C = \{a, b\}$ is a maximal proper Γ -ideal of S containing every proper Γ -ideal of S. We have the following result is combining Theorem 4.6 and Corollary 4.2.

Theorem 4.8. Let S be an ordered LA- Γ -semigroup with left identity. Then $S \setminus C$ is a maximal proper Γ -ideal of S containing all proper Γ -ideals of S.

Proof: Let S be an ordered LA- Γ -semigroup with left identity. By Corollary 4.2, we have every two-sided base of S is one-element base. Since every two-sided base of S is one element base, by Theorem 4.6, we obtain $S \setminus C = M^*$. Therefore, $S \setminus C$ is a maximal proper Γ -ideal of S containing all proper Γ -ideals of S.

5. Conclusion. In this paper, we focus on the results for two-sided bases of ordered LA- Γ -semigroups with left identity. We show in Corollary 4.2 that every two-sided base of an ordered LA- Γ -semigroup with left identity is one-element base. Finally, we prove in Theorem 4.8 that the complement of union of all two-sided base of an ordered LA- Γ -semigroup with left identity is the maximal proper Γ -ideal. In the future work, we can study other results in this algebraic structures. Moreover, we may use the essential (m, n)-ideal of semigroups defined in [10] to define essential (m, n)-bases of semigroups and study their properties.

REFERENCES

[1] I. Fabrici, One-sided bases of semigroups, Matematicky Casop., vol.22, pp.286-290, 1972.

^[2] T. Changphas and P. Kummoon, On Γ-semigroups containing two-sided bases, KKU Science Journal, vol.46, no.1, pp.154-161, 2018.

- [3] M. K. Sen, On Γ-semigroups, Proc. of the International Conference on Algebra and Its Application, pp.301-308, 1981.
- [4] M. A. Kazim and N. Naseeruddin, On almost semigroups, Alig. Bull. Math., vol.2, no.1, pp.1-7, 1972.
- [5] T. Shah and I. Rehman, On Γ-ideals and Γ-bi-ideals in Γ-AG-groupoids, Int. J. Algebra, vol.4, no.6, pp.267-276, 2010.
- [6] M. Khan, V. Amjid, G. Zaman and N. Yaqoob, Characterizations of ordered Γ-Aber-Grassmann's groupoids, *Discuss. Math. Gen. Algebra Appl.*, vol.34, no.1, pp.55-73, 2014.
- [7] M. A. Ansari, Roughness applied to generalized F-ideals of ordered LA-Γ-ideals, Commu. Math. Appl., vol.10, no.1, pp.71-84, 2019.
- [8] A. Basar, A note on (m, n)-Γ-ideals of ordered LA-Γ-semigroups, Konuralp J. Math., vol.7, no.1, pp.107-111, 2019.
- [9] C. Akin, Fuzzy LA-(m, n)-Γ-ideals in LA-Γ-semigroups, Adv. Fuzzy Sets Syst., vol.4, no.6, pp.211-223, 2017.
- [10] R. Chinram and T. Gaketem, Essential (m, n)-ideal and essential fuzzy (m, n)-ideals in semigroups, ICIC Express Letters, vol.15, no.10, pp.1037-1044, 2021.