ON ORDERED LA-「-SEMIGROUPS CONTAINING TWO-SIDED BASES

Wichayaporn Jantanan ${ }^{1}$, Suphattra Suphasit ${ }^{1}$, Intuoon Kamkong ${ }^{1}$ Samkhan Hobanthad ${ }^{1}$, Ronnason Chinram ${ }^{2}$ and Thiti Gaketem ${ }^{3, *}$
${ }^{1}$ Department of Mathematics Faculty of Science
Buriram Rajabhat University
Nai Muang, Muang, Buriram 31000, Thailand
\{ wichayaporn.jan; samkhan.hb \}@bru.ac.th; \{ pattra100342; intuoon.kk \}@gmail.com
${ }^{2}$ Division of Computational Science Faculty of Science
Prince of Songkla University
Hat Yai, Songkhla 90110, Thailand
ronnason.c@psu.ac.th
${ }^{3}$ Department of Mathematics
School of Science University of Phayao
19, Moo 2, Tambon Mae Ka, Amphur Mueang, Phayao 56000, Thailand
*Corresponding author: thiti.ga@up.ac.th

Received September 2021; accepted December 2021

Abstract

Two-sided base is the smallest set generated two-sided ideal under some condition. The aim of this paper is to introduce the concept of two-sided bases of an ordered LA-Г-semigroup with left identity. We give a characterization when a non-empty subset of an ordered LA-Г-semigroup with left identity is a two-sided base of an ordered Γ-semigroup with left identity. Finally, a characterization when the complement of the union of all two-sided bases of an ordered Γ-semigroup with left identity is maximal will be given.

Keywords: Ordered LA- Γ-semigroups, Γ-ideals, Two-sided bases, Maximal proper Γ ideals

1. Introduction. Based on the notion of two-sided ideals of a semigroup generated by a non-empty set, the concept of two-sided bases of a semigroup has been introduced and studied by Fabrici [1]. Later, Changpas and Kummoon [2] studied and described the structure of a Γ-semigroup containing two-sided bases. The structure of a Γ-semigroup was introduced by Sen [3] as a generalization of ternary semigroup and semigroup and the structure of an LA-semigroup was introduced by Kazim and Naseeruddin [4] as a generalization of commutative semigroups. The structure of an LA- Γ-semigroups (Γ -AG-groupoid), where Γ is a non-empty set, was given by Shah and Rehman [5]. The concept of an ordered LA- Γ-semigroups was introduced by Khan et al. [6]. This algebraic structure is a generalization of LA- Γ-semigroups, also see $[7,8]$. The purpose of this paper is to introduce the concept of two-sided bases of an ordered LA- Γ-semigroup, and extend results in [1] to ordered LA- Γ-semigroups. In Section 2, we recall some basic definitions and results of ordered LA- Γ-semigroups. In Section 3, we define two-sided bases of ordered LA- Γ-semigroups and give their basic results. Section 4 is the main part of this paper, and we show remarkable results of two-sided bases of ordered LA- Γ-semigroups. Finally, Section 5 concludes the paper.
2. Ordered LA-「-Semigroups. We provide some definitions and results which will be used for this paper.
Definition 2.1. ([5]) Let S and Γ be non-empty sets, then S is called an LA- Γ-semigroup if there exists a mapping $S \times \Gamma \times S \rightarrow S$ written as (a, γ, b) and denoted by a b such that S satisfied the left invertive law $(a \gamma b) \beta c=(c \gamma b) \beta$ for all $a, b, c \in S$ and $\gamma, \beta \in \Gamma$.

Definition 2.2. ([5]) An element e of an LA-Г-semigroup S is called a left identity if e $\gamma a=a$ for all $a \in S$ and $\gamma \in \Gamma$.

Lemma 2.1. ([5]) If S is an LA-Г-semigroup with left identity e, then $S \Gamma S=S$ and $S=e \Gamma S=S \Gamma e$.

Proposition 2.1. ([9]) Let S be an $L A-\Gamma$-semigroup.
(1) Every LA-Г-semigroup with left identity satisfies the equalities a $\gamma(b \beta c)=b \gamma(a \beta c)$ and $(a \gamma b) \beta(c \alpha d)=(d \gamma c) \beta(b \alpha a)$ for all $a, b, c, d \in S$ and $\gamma, \beta, \alpha \in \Gamma$.
(2) An LA-Г-semigroup S is Γ-medial, i.e., $(a \gamma b) \beta(c \gamma d)=(a \gamma c) \beta(b \alpha d)=(a \gamma c) \beta(b \alpha d)$ for all $a, b, c, d \in S$ and $\gamma, \beta, \alpha \in \Gamma$.

Definition 2.3. ([6]) An ordered LA-Г-semigroup S (abbreviated as a po-LA-Г-semigroup) is a structure (S, Γ, \cdot, \leq) in which the following conditions hold.
(1) (S, Γ, \cdot) is an LA- - -semigroup.
(2) (S, \leq) is a poset (i.e., reflexive, anti-symmetric and transitive).
(3) For all a, b and $x \in S$, $a \leq b$ implies $a \alpha x \leq b \alpha x$ and $x \alpha a \leq x \alpha b$ for all $\alpha \in \Gamma$.

Throughout this paper, unless stated otherwise, S stands for an ordered LA- Γ-semigroup. For a non-empty subsets A, B of an ordered LA- Γ-semigroup S, we defined
$A \Gamma B=\{a \gamma b \mid a \in A, b \in B$ and $\gamma \in \Gamma\}$ and $(A]=\{t \in S \mid t \leq a$, for some $a \in A\}$.
In particular, we write $B \Gamma a$ instead for $B \Gamma\{a\}, a \Gamma B$ instead for $\{a\} \Gamma B, a \cup B \Gamma a \cup$ $a \Gamma s \cup(S \Gamma a) \Gamma S$ instead for $\{a\} \cup B \Gamma a \cup a \Gamma s \cup(S \Gamma a) \Gamma S$ and ($a]$ instead for $(\{a\}]$.
Definition 2.4. [7] A non-empty subset A of an ordered $L A-\Gamma$-semigroup S is called an LA- Γ-subsemigroup of S if $A \Gamma A \subseteq A$.

Definition 2.5. [6] A non-empty subset A of an ordered LA-Г-semigroup S is called a left (resp. right) Γ-ideal of S if (i) $S \Gamma A \subseteq A(A \Gamma S \subseteq A)$ and (ii) if $a \in A$ and $b \in S$ such that $b \leq a$, then $b \in A$. A non-empty subset A of an ordered LA- Γ-semigroup S is called $a \Gamma$-ideal of S if is both a left and right Γ-ideal of S.
Definition 2.6. A proper Γ-ideal A of an ordered $L A-\Gamma$-semigroup $S(A \neq S)$ is said to be maximal if for any Γ-ideal B of $S, A \subseteq B \subseteq S$ implies $A=B$ or $B=S$.

Lemma 2.2. ([6]) Let S be an ordered LA-Г-semigroup, and then the following statements are true.
(1) $A \subseteq(A]$, for all $A \subseteq S$.
(2) If $A \subseteq B \subseteq S$ then $(A] \subseteq(B]$.
(3) $(A] \Gamma(B] \subseteq(A \Gamma B]$, for all subsets A, B of S.
(4) $(A]=((A]]$, for all $A \subseteq S$.
(5) For every left (resp. right) Γ-ideal T of $S,(T]=T$.
(6) $((A] \Gamma(B]] \subseteq(A \Gamma B]$, for all subsets A, B of S.
(7) $(A \cup B]=(A] \cup(B]$, for all subsets A, B of S.
(8) If A and B are two Γ-ideal of S, then the union $A \cup B$ is a Γ-ideal of S.

Lemma 2.3. Let S be an ordered $L A-\Gamma$-semigroup and A_{i} be a Γ-ideal of S for all $i \in I$. If $\bigcap_{i \in I} A_{i} \neq \varnothing$, then $\bigcap_{i \in I} A_{i}$ is a Γ-ideal of S.

Proof: It is obvious.
Let A be a non-empty subset of an ordered LA- Γ-semigroup S. The intersection of all Γ-ideals of S containing A is the smallest Γ-ideal of S generated by A and is denoted by $(A)_{T}$.
Lemma 2.4. Let A be a non-empty subset of an ordered LA-Г-semigroup S with left identity e. Then $(A)_{T}=(A \cup S \Gamma A \cup A \Gamma S \cup(S \Gamma A) \Gamma S]$.

Proof: Straightforward.
For an element $a \in S$, we write $(\{a\})_{T}$ by $(a)_{T}$ which is called the principal Γ-ideal of S generated by a. Thus, $(a)_{T}=(a \cup S \Gamma a \cup a \Gamma S \cup(S \Gamma a) \Gamma S]$.
Corollary 2.1. Let S be an ordered $L A-\Gamma$-semigroup with left identity. Then $(S \Gamma b \cup b \Gamma S$ $\cup(S \Gamma b) \Gamma S]$ is a Γ-ideal of S for all $b \in S$.
3. Two-Sided Bases of Ordered LA-「-Semigroups. We begin this section with the definition of two-sided bases of an ordered LA-Г-semigroup with left identity as follows.
Definition 3.1. Let S be an ordered LA- Γ-semigroup with left identity. A non-empty subset A of S is called a two-sided base of S if it satisfies the following two conditions.
(1) $S=(A \cup S \Gamma A \cup A \Gamma S \cup(S \Gamma A) \Gamma S]$.
(2) If B is a subset of A such that $S=(B \cup S \Gamma B \cup B \Gamma S \cup(S \Gamma B) \Gamma S]$, then $B=A$.

Example 3.1. Let $S=\{a, b, c, d, e\}$ and $\Gamma=\{\gamma\}$ with multiplication defined by

γ	a	b	c	d	c
a	a	a	a	a	a
b	a	b	c	d	c
c	a	c	b	c	d
d	a	d	c	b	c
c	a	c	d	c	b

and $\leq=\{(a, a),(b, b),(c, c),(d, d),(c, c),(a, b),(a, c),(a, d),(a, c)\}$. Then S is an ordered LA-Г-semigroup with left identity b. We have the two-sided bases of S are $A_{1}=\{b\}, A_{2}$ $=\{c\}, A_{3}=\{d\}$ and $A_{4}=\{e\}$. However, $A_{5}=\{a\}$ is not a two-sided base.
Example 3.2. Let $S=\{a, b, c, d, e\}$ and $\Gamma=\{\alpha\}$ with multiplication defined by

α	a	b	c	d	c
a	a	a	a	a	a
b	a	b	b	b	b
c	a	b	d	c	c
d	a	b	c	d	c
c	a	b	c	c	d

and $\leq=\{(a, a),(b, b),(c, c),(d, d),(e, e),(a, b)\}$. Then S is an ordered LA- Γ-semigroup with left identity d. We have the two-sided bases of S are $A_{1}=\{c\}, A_{2}=\{d\}$ and $A_{3}=$ $\{e\}$. However, $A_{4}=\{a\}$ and $A_{5}=\{b\}$ are not a two-sided bases.

To characterize when a non-empty subset of ordered LA- Γ-semigroup S with left identity is a two-sided base of the ordered LA- Γ-semigroup S with left identity we need the quasi-ordering defined as follows.
Definition 3.2. Let S be an ordered $L A$ - Γ-semigroup. We define a quasi-ordering on S for any $a, b \in S, a \leq_{I} b \Leftrightarrow(a)_{T} \subseteq(b)_{T}$.

We write $a<_{I} b$ if $a \leq_{I} b$ but $a \neq b$, i.e., $a_{T} \subset b_{T}$.
The following example shows that the order \leq_{I} defined above is not, in general, a partial order.

Example 3.3. From Example 3.2, we have that $(c)_{T} \subseteq(d)_{T}$ (i.e., $c \leq_{I} d$) and $(d)_{T} \subseteq(c)_{T}$ (i.e., $d \leq_{I} c$), but $c \neq d$. Thus, \leq_{I} is not a partial order on S.

Lemma 3.1. Let S be an ordered $L A$ - Γ-semigroup. For any $a, b \in S$, if $a \leq b$, then $a \leq_{I} b$.

Proof: Let $a, b \in S$ such that $a \leq b$. We will show that $a \leq_{I} b$, i.e., $(a)_{T} \subseteq(b)_{T}$. Let $x \in(a)_{T}$. Since $x \in(a)_{T}=(a \cup S \Gamma a \cup a \Gamma S \cup(S \Gamma a) \Gamma S], x \leq y$ for some $y \in$ $a \cup S \Gamma a \cup a \Gamma S \cup(S \Gamma a) \Gamma S$. There are four cases to consider.

Case 1: $y=a$. Then $x \leq a \leq b$, so $x \leq b$ where $b \in b \cup S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S$. We have that $x \in(b \cup S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S]$; thus, $x \in(b)_{T}$. So $a \in(b)_{T}$.

Case 2: $y \in S \Gamma a$. Then $y=s \gamma a$ for some $s \in S, \gamma \in \Gamma$. Since $a \leq b$, then $s \gamma a \leq s \gamma b$ and $s \gamma b \in S \Gamma b \subseteq b \cup S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S$. Since $x \leq y \leq s \gamma b$ where $s \gamma b \in b \cup S \Gamma b \cup$ $b \Gamma S \cup(S \Gamma b) \Gamma S, x \in(b)_{T}$. So $S \Gamma a \subseteq(b)_{T}$.

Case 3: $y \in a \Gamma S$. Then $y=a \gamma s$ for some $s \in S, \gamma \in \Gamma$. Since $a \leq b$, then $a \gamma s \leq b \gamma s$ and $b \gamma s \in b \Gamma S \subseteq b \cup S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S$. Since $x \leq y \leq b \gamma s$ where $b \gamma s \in b \cup S \Gamma b \cup$ $b \Gamma S \cup(S \Gamma b) \Gamma S, x \in(b)_{T}$. So $a \Gamma S \subseteq(b)_{T}$.

Case 4: $y \in(S \Gamma a) \Gamma S$. Then $y=\left(s_{1} \gamma a\right) \beta s_{2}$ for some $s_{1}, s_{2} \in S, \gamma, \beta \in \Gamma$. Since $a \leq$ b, then $s_{1} \gamma a \leq s_{1} \gamma b$ and $\left(s_{1} \gamma a\right) \beta s_{2} \leq\left(s_{1} \gamma b\right) \beta s_{2}$ where $\left(s_{1} \gamma b\right) \beta s_{2} \in(S \Gamma b) \Gamma S \subseteq b \cup$ $S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S$. Since $x \leq y \leq\left(s_{1} \gamma b\right) \beta s_{2}$ where $\left(s_{1} \gamma b\right) \beta s_{2} \in(S \Gamma b) \Gamma S \subseteq b \cup S \Gamma b \cup$ $b \Gamma S \cup(S \Gamma b) \Gamma S, x \in(b)_{T}$. So $(S \Gamma a) \Gamma S \subseteq(b)_{T}$. Hence $a \cup S \Gamma a \cup a \Gamma S \cup(S \Gamma a) \Gamma S \subseteq(b)_{T}$ and so $(a)_{T}=(a \cup S \Gamma a \cup a \Gamma S \cup(S \Gamma a) \Gamma S] \subseteq\left((b)_{T}\right]=(b)_{T}$. Therefore, $(a)_{T} \subseteq(b)_{T}$, i.e., $a \leq_{I} b$.
Lemma 3.2. Let A be a two-sided base of an ordered $L A-\Gamma$-semigroup S with left identity and let $a, b \in A$. If $a \in(S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S]$, then $a=b$.

Proof: Assume that $a, b \in A$ such that $a \in(S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S]$, and suppose that $a \neq b$. Let $B=A \backslash\{a\}$. Since $a \neq b, b \in B$. To show that $(A)_{T} \subseteq(B)_{T}$, we let $x \in(A \cup S \Gamma A \cup A \Gamma S \cup(S \Gamma A) \Gamma S]$. Then $x \leq z$ for some $z \in A \cup S \Gamma A \cup A \Gamma S \cup(S \Gamma A) \Gamma S$. There are four cases to consider.

Case 1: $z \in A$. If $z \neq a$, then $z \in B \subseteq(B \cup S \Gamma B \cup B \Gamma S \cup(S \Gamma B) \Gamma S]$. Since $x \leq z$ and $z \in(B \cup S \Gamma B \cup B \Gamma S \cup(S \Gamma B) \Gamma S], x \in((B \cup S \Gamma B \cup B \Gamma S \cup(S \Gamma B) \Gamma S]]=$ $(B \cup S \Gamma B \cup B \Gamma S \cup(S \Gamma B) \Gamma S]$. Thus, $x \in(B)_{T}$. If $z=a$, then by assumption we have $z=a \in(S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S] \subseteq(B \cup S \Gamma B \cup B \Gamma S \cup(S \Gamma B) \Gamma S]$. Since $x \leq z$ and $z \in(B \cup S \Gamma B \cup B \Gamma S \cup(S \Gamma B) \Gamma S]$, then $x \in((B \cup S \Gamma B \cup B \Gamma S \cup(S \Gamma B) \Gamma S]]=(B \cup$ $S \Gamma B \cup B \Gamma S \cup(S \Gamma B) \Gamma S]$. So $x \in(B)_{T}$.

Case 2: $z \in S \Gamma A$. Then $z=s \gamma c$ for some $s \in S, \gamma \in \Gamma$ and $c \in A$. If $c \neq a$, then $z=s \gamma c \in S \Gamma B \subseteq(B)_{T}$. Since $x \leq z$ and $z \in(B)_{T}$, we have $x \in(B)_{T}$. If $c=a$, then $z=s \gamma a \in S \Gamma(S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S]$. Since $(S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S]$ is a Γ-ideal of S for all $b \in S, z \in(S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S] \subseteq(B \cup S \Gamma B \cup B \Gamma S \cup(S \Gamma B) \Gamma S]=(B)_{T}$. Since $x \leq z$ and $z \in(B)_{T}$, we have $x \in(B)_{T}$.

Case 3: $z \in A \Gamma S$. Then $z=c \gamma s$ for some $c \in A, \gamma \in \Gamma$ and $s \in S$. If $c \neq a$, then $z=c \gamma s \in B \Gamma S \subseteq(B)_{T}$. Since $x \leq z$ and $z \in(B)_{T}$, we have $x \in(B)_{T}$. If $c=a$, then $z=a \gamma s \in(S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S] \Gamma S$. Since $(S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S]$ is a Γ-ideal of S for all $b \in S, z \in(S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S] \subseteq(B)_{T}$. Since $x \leq z$ and $z \in(B)_{T}, x \in(B)_{T}$.

Case 4: $z \in(S \Gamma A) \Gamma S$. Then $z=\left(s_{1} \gamma c\right) \beta s_{2}$ for some $s_{1}, s_{2} \in S, \gamma, \beta \in \Gamma$ and $c \in A$. If $c \neq a$, then $z=\left(s_{1} \gamma c\right) \beta s_{2} \in(S \Gamma B) \Gamma S \subseteq(B)_{T}$. Since $x \leq z$ and $z \in(B)_{T}$, we have $x \in(B)_{T}$. If $c=a$, then $z=\left(s_{1} \gamma a\right) \beta s_{2} \in(S \Gamma(S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S]) \Gamma S$. Since $(S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S]$ is a Γ-ideal of S for all $b \in S, z \in(S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S] \Gamma S \subseteq$ $(S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S] \subseteq(B)_{T}$. Since $x \leq z$ and $z \in(B)_{T}, x \in(B)_{T}$. Thus, $(A)_{T} \subseteq(B)_{T}$. By $S=(A)_{T} \subseteq(B)_{T} \subseteq S$, hence $(B)_{T}=S$. This is a contradiction. Therefore, $a=b$.
4. Main Results. In this section, the algebraic structure of an ordered LA- Γ-semigroup with left identity containing two-sided bases will be presented.

Theorem 4.1. A non-empty subset A of an ordered $L A-\Gamma$-semigroup S with left identity, is a two-sided base of S if and only if A satisfies the following two conditions:
(1) for any $x \in S$ there exists $a \in A$ such that $x \leq_{I} a$;
(2) for any $a, b \in A$, if $a \neq b$, then neither $a \leq_{I} b$ nor $b \leq_{I} a$.

Proof: Assume that A is a two-sided base of S. Then $S=(A)_{T}$. Let $x \in S$. Since $x \in$ $S=(A \cup S \Gamma A \cup A \Gamma S \cup(S \Gamma A) \Gamma S]$, we have $x \leq y$ for some $y \in A \cup S \Gamma A \cup A \Gamma S \cup(S \Gamma A) \Gamma S$. There are four cases to consider.

Case 1: $y \in A$. Since $x \leq y$, by Lemma 3.1, we have that $x \leq_{I} y$.
Case 2: $y \in S \Gamma A$. Then $y=s \gamma a$ for some $s \in S, \gamma \in \Gamma$ and $a \in A$. By $y=$ $s \gamma a \in S \Gamma a \subseteq(a)_{T}, S \Gamma y \subseteq S \Gamma(S \Gamma a)=(S \Gamma S) \Gamma(S \Gamma a)=(a \Gamma S) \Gamma(S \Gamma S)=(a \Gamma S) \Gamma S=$ $(S \Gamma S) \Gamma a=S \Gamma a \subseteq(a)_{T}, y \Gamma S \subseteq(S \Gamma a) \Gamma S \subseteq(a)_{T}$ and $(S \Gamma y) \Gamma S \subseteq(S \Gamma(S \Gamma a)) \Gamma S=$ $((S \Gamma S) \Gamma(S \Gamma a)) \Gamma S=((a \Gamma S) \Gamma(S \Gamma S)) \Gamma S=((a \Gamma S) \Gamma S) \Gamma S=((S \Gamma S) \Gamma a) \Gamma S=(S \Gamma a) \Gamma S \subseteq$ $(a)_{T}$. Then $y \cup S \Gamma y \cup y \Gamma S \cup(S \Gamma y) \Gamma S \subseteq(a)_{T}$, and so $(y)_{T}=(y \cup S \Gamma y \cup y \Gamma S \cup(S \Gamma y) \Gamma S]$ $\subseteq\left((a)_{T}\right]=(a)_{T}$, i.e., $y \leq_{I} a$. Since $x \leq y$, by Lemma 3.1, we have $x \leq_{I} y$. So $x \leq_{I} y \leq_{I} a$. Thus, $x \leq_{I} a$.

Case 3: $y \in A \Gamma S$. Then $y=a \gamma s$ for some $a \in A, \gamma \in \Gamma$ and $s \in S$. By $y=a \gamma s \in$ $a \Gamma S \subseteq(a)_{T}, S \Gamma y \subseteq S \Gamma(a \Gamma S)=a \Gamma(S \Gamma S)=a \Gamma S \subseteq(a)_{T}, y \Gamma S \subseteq(a \Gamma S) \Gamma S=(S \Gamma S) \Gamma a=$ $S \Gamma a \subseteq(a)_{T}$ and $(S \Gamma y) \Gamma S \subseteq(S \Gamma(a \Gamma S)) \Gamma S=(a \Gamma(S \Gamma S)) \Gamma S=(a \Gamma S) \Gamma S=(S \Gamma S) \Gamma a=$ $S \Gamma a \subseteq(a)_{T}$. Then $y \cup S \Gamma y \cup y \Gamma S \cup \Gamma S \subseteq(a)_{T}$, and so $(y)_{T}=(y \cup S \Gamma y \cup y \Gamma S \cup(S \Gamma y) \Gamma S]$ $\subseteq\left((a)_{T}\right]=(a)_{T}$, i.e., $y \leq_{T} a$. Since $x \leq y$, by Lemma 3.1, we have $x \leq_{I} y$. So $x \leq_{I} y \leq_{I} a$. Thus, $x \leq_{I} a$.

Case 4: $y \in(S \Gamma A) \Gamma S$. Then $y=\left(s_{1} \gamma a\right) \beta s_{2}$ for some $s_{1}, s_{2} \in S, \gamma, \beta \in \Gamma$ and $a \in A$. By $y=\left(s_{1} \gamma a\right) \beta s_{2} \in(S \Gamma a) \Gamma S \subseteq(a)_{T}, S \Gamma y \subseteq S \Gamma((S \Gamma a) \Gamma S)=(S \Gamma a) \Gamma(S \Gamma S)=(S \Gamma a) \Gamma S \subseteq$ $(a)_{T}, y \Gamma S \subseteq((S \Gamma a) \Gamma S) \Gamma S=(S \Gamma S) \Gamma(S \Gamma a)=(a \Gamma S) \Gamma(S \Gamma S)=(a \Gamma S) \Gamma S=(S \Gamma S) \Gamma a=$ $S \Gamma a \subseteq(a)_{T}$ and $(S \Gamma y) \Gamma S \subseteq(S \Gamma((S \Gamma a) \Gamma S)) \Gamma S=((S \Gamma a) \Gamma(S \Gamma S)) \Gamma S=((S \Gamma a) \Gamma S) \Gamma S=$ $(S \Gamma S) \Gamma(S \Gamma a)=(a \Gamma S) \Gamma(S \Gamma S)=(a \Gamma S) \Gamma S=(S \Gamma S) \Gamma a=S \Gamma a \subseteq(a)_{T}$. Then $y \cup S \Gamma y \cup$ $y \Gamma S \cup(S \Gamma y) \Gamma S \subseteq(a)_{T}$, and so $(y)_{T}=(y \cup S \Gamma y \cup y \Gamma S \cup(S \Gamma y) \Gamma S] \subseteq\left((a)_{T}\right]=(a)_{T}$, i.e., $y \leq_{I} a$. Since $x \leq y$, by Lemma 3.1, we have $x \leq_{I} y$. So $x \leq_{I} y \leq_{I} a$. Thus, $x \leq_{I} a$.

Hence the condition (1) holds. Next, let $a, b \in A$ such that $a \neq b$. Suppose $a \leq_{I} b$. Set $B=A \backslash\{a\}$. Then $b \in B$ and $B \subseteq A$. Let $x \in S$. By condition (1), there exists $c \in A$ such that $x \leq_{I} c$, i.e., $(x)_{T} \subseteq(c)_{T}$. There are two cases to consider. If $c \neq a$, then $c \in B$. So $x \in(x)_{T} \subseteq(c)_{T} \subseteq(B)_{T}$. If $c=a$, then $x \leq_{I} a \leq b_{I}$ and $x \leq_{I} b$, i.e., $(x)_{T} \subseteq(b)_{T}$. So $x \in(x)_{T} \subseteq(b)_{T} \subseteq(B)_{T}$. Thus, $S \subseteq(B)_{T}$ and so $S=(B)_{T}$. This is a contradiction. Hence $a \leq_{I} b$ is false. The case $b \leq_{I} a$ proved similarly. Hence the condition (2) holds.

Conversely, assume that the conditions (1) and (2) hold. We will show that A is a two-sided base of S. To show that $S=(A)_{T}$, let $x \in S$, by condition (1), there exists $a \in A$ such that $x \leq_{I} a$. Then $x \in(x)_{T} \subseteq(a)_{T} \subseteq(A)_{T}$. So $S \subseteq(A)_{T}$ and clearly $(A)_{T} \subseteq S$. Thus, $S=(A)_{T}$. Next, to show that A is a minimal subset of S with the property $S=(A)_{T}$, let $B \subset A$ such that $S=(B)_{T}$. Then there exists $a \in A$ and $a \notin B$. Since $a \in A, a \in S=(B)_{T}$. We will show that $a \notin(B]$. If $a \in(B]$, then $a \leq y$ for some $y \in B$, by Lemma 3.1, $a \leq_{I} y$. This is a contradiction. So $a \notin(B]$. Thus, $a \in(S \Gamma B \cup B \Gamma S \cup(S \Gamma B) \Gamma S]$. Since $a \in(S \Gamma B \cup B \Gamma S \cup(S \Gamma B) S]$, we have $a \leq c$ for some $c \in S \Gamma B \cup B \Gamma S \cup(S \Gamma B) \Gamma S$. There are three cases to consider.

Case 1: $c \in S \Gamma B$. Then $c=s \gamma b_{1}$ for some $s \in S, \gamma \in \Gamma$ and $b_{1} \in B$. Since $a \leq c$ and $c=s \gamma b_{1} \in S \Gamma b_{1} \subseteq b_{1} \cup S \Gamma b_{1} \cup b_{1} \Gamma S \cup\left(S \Gamma b_{1}\right) \Gamma S, a \in\left(b_{1} \cup S \Gamma b_{1} \cup b_{1} \Gamma S \cup\left(S \Gamma b_{1}\right) \Gamma S\right]=$ $\left(b_{1}\right)_{T}$. It follows that $(a)_{T} \subseteq\left(b_{1}\right)_{T}$. Thus, $a \leq_{I} b_{1}$ where $a, b_{1} \in A$. This is a contradiction.

Case 2: $c \in B \Gamma S$. Then $c=b_{2} \gamma s$ for some $s \in S, \gamma \in \Gamma$ and $b_{2} \in B$. Since $a \leq c$ and $c=b_{2} \gamma s \in b_{2} \Gamma S \subseteq b_{2} \cup S \Gamma b_{2} \cup b_{2} \Gamma S \cup\left(S \Gamma b_{2}\right) \Gamma S, a \in\left(b_{2} \cup S \Gamma b_{2} \cup b_{2} \Gamma S \cup\left(S \Gamma b_{2}\right) \Gamma S\right]=$ $\left(b_{2}\right)_{T}$. It follows that $(a)_{T} \subseteq\left(b_{2}\right)_{T}$. Thus, $a \leq_{I} b_{2}$ where $a, b_{2} \in A$. This is a contradiction.

Case 3: $c \in(S \Gamma B) \Gamma S$. Then $c=\left(s_{1} \gamma b_{3}\right) \beta s_{2}$ for some $s_{1}, s_{2} \in S, \gamma, \beta \in \Gamma$ and $b_{3} \in B$. Since $a \leq c$ and $c=\left(s_{1} \gamma b_{3}\right) \beta s_{1} \in\left(S \Gamma b_{3}\right) \Gamma S \subseteq b_{3} \cup S \Gamma b_{3} \cup b_{3} \Gamma S \cup\left(S \Gamma b_{3}\right) \Gamma S, a \in\left(b_{3} \cup\right.$
$\left.S \Gamma b_{3} \cup b_{3} \Gamma S \cup\left(S \Gamma b_{3}\right) \Gamma S\right]=\left(b_{3}\right)_{T}$. It follows that $(a)_{T} \subseteq\left(b_{3}\right)_{T}$. Thus, $a \leq_{I} b_{3}$ where a, b_{3} $\in A$. This is a contradiction.

Therefore, A is a two-sided base of S. The proof is completed.
Theorem 4.2. Let A be a two-sided base of an ordered LA-Г-semigroup S with left identity, such that $(a)_{T}=(b)_{T}$, for some a in A and b in S. If $a \neq b$, then S contains at the least two two-sided bases.

Proof: Assume that $a \neq b$. Suppose that $b \in A$. Since $a \neq b$ and $a \in(a)_{T}=(b)_{T}=(b$ $\cup S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S]=(b] \cup(S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S], a \in(b]$ or $a \in(S \Gamma b \cup b \Gamma S \cup$ $(S \Gamma b) \Gamma S]$. If $a \in(b]$, then $a \leq b$, by Lemma 3.1, we have $a \leq_{I} b$ where $a, b \in A$. This is a contradiction. So $a \in(S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S]$. By Lemma 3.2, $a=b$. This is a contradiction. Thus, $b \in S \backslash A$. Setting $B=(A \backslash\{a\}) \cup\{b\}$, then $B \neq A$. We will show that B is a two-sided base of S using Theorem 4.1. First, let $x \in S$. Since A is a two-sided base of S, by Theorem 4.1(1), $x \leq_{I} c$ for some $c \in A$. If $c \neq a$, then $c \in B$. If $c=a$, then $(c)_{T}=(a)_{T}$. Since $(a)_{T}=(b)_{T}$, we have $(c)_{T}=(b)_{T}$, i.e., $c \leq_{I} b$. So $x \leq_{I} c \leq_{I} b$. Thus, $x \leq_{I} b$ where $b \in B$. Next, let $c_{1}, c_{2} \in B$ such that $c_{1} \neq c_{2}$. We will show that neither $c_{1} \leq_{I} c_{2}$ nor $c_{2} \leq_{I} c_{1}$. Then there are four cases to consider.

Case 1: $c_{1} \neq b$ and $c_{2} \neq b$. Then $c_{1}, c_{2} \in A$. Since A is a two-sided base of S, then neither $c_{1} \leq_{I} c_{2}$ nor $c_{2} \leq_{I} c_{1}$.

Case 2: $c_{1} \neq b$ and $c_{2}=b$. Then $\left(c_{2}\right)_{T}=(b)_{T}$. If $c_{1} \leq_{I} c_{2}$, then $\left(c_{1}\right)_{T} \subseteq\left(c_{2}\right)_{T}=$ $(b)_{T}=(a)_{T}$. Thus, $c_{1} \leq_{I} a$ where $c_{1}, a \in A$. This is contradiction. If $c_{2} \leq_{I} c_{1}$, then $(a)_{T}=(b)_{T}=\left(c_{2}\right)_{T} \subseteq\left(c_{1}\right)_{T}$. Thus, $a \leq_{I} c_{1}$ where $c_{1}, a \in A$. This is a contradiction.

Case 3: $c_{1}=b$ and $c_{2} \neq b$. Then $\left(c_{1}\right)_{T}=(b)_{T}$. If $c_{1} \leq_{I} c_{2}$, then $(a)_{T}=(b)_{T}=$ $\left(c_{1}\right)_{T} \subseteq\left(c_{2}\right)_{T}$. Thus, $a \leq_{I} c_{2}$ where $c_{2}, a \in A$. This is contradiction. If $c_{2} \leq_{I} c_{1}$, then $\left(c_{2}\right)_{T} \subseteq\left(c_{1}\right)_{T}=(b)_{T}=(a)_{T}$. Thus, $c_{2} \leq_{I} a$ where $c_{2}, a \in A$. This is a contradiction.

Case 4: $c_{1}=b$ and $c_{2}=b$. This is impossible.
Therefore, B is a two-sided base of S.
The following corollary follows directly from Theorem 4.2.
Corollary 4.1. Let A be a two-sided base of an ordered LA-Г-semigroup S with left identity, and let $a \in A$. If $(x)_{T}=(a)_{T}$ for some $x \in S, x \neq a$, then x belongs to some two-sided base of S, which is different from A.

Theorem 4.3. Let A and B be two-sided bases of ordered $L A-\Gamma$-semigroup S with left identity. Then A and B have the same cardinality.

Proof: Let A and B be two-sided bases of S. Let $a \in A$. Since B is a two-sided base of S, by Theorem 4.1(1), there exists $b \in B$ such that $a \leq_{I} b$. Similarly, since A is a twosided base of S, there exists $a^{*} \in A$ such that $b \leq_{I} a^{*}$. So $a \leq_{I} b \leq_{I} a^{*}$, and $a \leq_{I} a^{*}$. By Theorem 4.1(2), $a=a^{*}$. Hence $(a)_{T}=(b)_{T}$. Now, define a mapping $\varphi: A \rightarrow B ; \varphi(a)=b$ for all $a \in A$. First, to show that φ is well-defined, let $a_{1}, a_{2} \in A$ such that $a_{1}=a_{2}$, $\varphi\left(a_{1}\right)=b_{1}$, and $\varphi\left(a_{2}\right)=b_{2}$ for some $b_{1}, b_{2} \in B$. Then $\left(a_{1}\right)_{T}=\left(b_{1}\right)_{T}$ and $\left(a_{2}\right)_{T}=\left(b_{2}\right)_{T}$. Since $a_{1}=a_{2},\left(a_{1}\right)_{T}=\left(a_{2}\right)_{T}$. Thus, $\left(a_{1}\right)_{T}=\left(a_{2}\right)_{T}=\left(b_{1}\right)_{T}=\left(b_{2}\right)_{T}$, so $b_{1} \leq_{I} b_{2}$ and $b_{2} \leq_{I} b_{1}$. By Theorem 4.1(2), $b_{1}=b_{2}$. Hence $\varphi\left(a_{1}\right)=\varphi\left(a_{2}\right)$. Therefore, φ is welldefined. Next, to show that φ is one-to-one, let $a_{1}, a_{2} \in A$ such that $\varphi\left(a_{1}\right)=\varphi\left(a_{2}\right)$. Then $\varphi\left(a_{1}\right)=\varphi\left(a_{2}\right)=b$ for some $b \in B$. We have $\left(a_{1}\right)_{T}=\left(a_{2}\right)_{T}=(b)_{T}$. Since $\left(a_{1}\right)_{T}=\left(a_{2}\right)_{T}$, $a_{1} \leq_{I} a_{2}$ and $a_{2} \leq_{I} a_{1}$. Thus, $a_{1}=a_{2}$. Therefore, φ is one-to-one. Finally, to show that φ is onto, let $b \in B$, and then there exists $a \in A$ such that $b \leq_{I} a$. Similarly, there exists $b^{*} \in B$ such that $a \leq_{I} b^{*}$. Then $b \leq_{I} a \leq_{I} b^{*}$, i.e., $b \leq_{I} b^{*}$. By Theorem 4.1(2), $b=b^{*}$. So $b \leq_{I} a$ and $a \leq_{I}$ b, i.e., $(b)_{T}=(a)_{T}$ and $(a)_{T}=(b)_{T}$. Thus, $(a)_{T}=(b)_{T}$. Therefore, φ is onto. This completes the proof.

If a two-sided base of an ordered LA- Γ-semigroup S with left identity, is a Γ-ideal of S, then $S=(A \cup S \Gamma A \cup A \Gamma S \cup(S \Gamma A) \Gamma S] \subseteq(A \cup A \cup A \cup A]=(A]=A$. Hence $S=A$. The
converse statement is obvious. Then we conclude that a two-sided base A of an ordered LA- Γ-semigroup S with left identity, is a Γ-ideal of S if and only if $A=S$.

In Example 3.1, it is observed that not every two-sided base of an ordered LA- Γ semigroup S with left identity, is an LA- Γ-subsemigroup. The following theorem gives necessary and sufficient conditions of a two-sided base of an ordered LA- Γ-semigroup S with left identity, to be an LA- Γ-subsemigroup.
Theorem 4.4. A two-sided base A of an ordered LA- - -semigroup S with left identity, is an $L A$ - Γ-subsemigroup if and only if $A=\{a\}$ with $a \gamma a=a$ for all $\gamma \in \Gamma$.

Proof: Assume that A is an LA- Γ-subsemigroup of S. Let $a, b \in A$ and $\gamma \in \Gamma$. Since A is an LA- Γ-subsemigroup S, we have $a \gamma b \in A$. Set $a \gamma b=c$. Then $c=a \gamma b \in$ $S \Gamma b \subseteq(S \Gamma b \cup b \Gamma S \cup S \Gamma b \Gamma S]$. By Lemma 3.2, we have $c=b$. So $a \gamma b=b$. Similarly, $c=a \gamma b \in a \Gamma S \subseteq(S \Gamma a \cup a \Gamma S \cup S \Gamma a \Gamma S]$. By Lemma 3.2, we have $c=a$. So $a \gamma b=a$. Thus, $a=b$. Therefore, $A=\{a\}$ with $a \gamma a=a$. The converse statement is clear.

The union of all two-sided bases of an ordered LA- Γ-semigroup S with left identity is denoted by C.
Theorem 4.5. Let S be an ordered $L A-\Gamma$-semigroup with left identity. Then $S \backslash C=\varnothing$ or $a \Gamma$-ideal of S.

Proof: Assume that $S \backslash C \neq \varnothing$. We will show that $S \backslash C$ is a Γ-ideal of S. Let $x \in S$, $\gamma \in \Gamma$ and $a \in S \backslash C$. To show that $x \gamma a \in S \backslash C$ and $a \gamma x \in S \backslash C$, suppose that $x \gamma a \notin S \backslash C$. Then $x \gamma a \in C$. Thus, $x \gamma a \in A$ for a two-sided base A of S. Let $x \gamma a=b$ for some $b \in A$. Since $b=x \gamma a \in S \Gamma a \subseteq(a)_{T}, b \in(a)_{T}$. It follows that $(b)_{T} \subseteq(a)_{T}$. If $(b)_{T}=(a)_{T}$, by Corollary 4.1, we have that $a \in C$. This is a contradiction. Thus, $(b)_{T} \subset(a)_{T}$, i.e., $b<_{I} a$. Since A is a two-sided base of S, by Theorem 4.1(1), there exists $b_{1} \in A$ such that $a \leq b_{1}$. Since $b<_{I} a \leq_{I} b_{1}, b \leq_{I} b_{1}$ where $b, b_{1} \in A$. This is a contradiction. Thus, $x \gamma a \in S \backslash C$. Similarly, we can show that $a \gamma x \in S \backslash C$. Next, to show that if $a_{1} \in S \backslash C$ and $a_{2} \in S$ such that $a_{2} \leq a_{1}$, then $a_{2} \in S \backslash C$. Suppose that $a_{2} \in C$. Then $a_{2} \in B$ for a two-sided base B of S. Since B is a two-sided base of S, by Theorem 4.1(1), there exists $a_{3} \in B$ such that $a_{1} \leq_{I} a_{3}$. Since $a_{2} \leq a_{1}$, by Lemma 3.1, $a_{2} \leq_{I} a_{1}$. We have that $a_{2} \leq_{I} a_{3}$ where $a_{2}, a_{3} \in B$. This is a contradiction. Thus, $a_{2} \notin C$, i.e., $a_{2} \in S \backslash C$. Therefore, $S \backslash C$ is a Γ-ideal of S.

Let M^{*} be a proper Γ-ideal of an ordered LA- Γ-semigroup S with left identity, containing every proper Γ-ideal of S.

Theorem 4.6. Let S be an ordered $L A-\Gamma$-semigroup with left identity, and $\varnothing \neq C \subset S$. Then $S \backslash C=M^{*}$ if and only if every two-sided base of S is one-element base.

Proof: Assume that $S \backslash C=M^{*}$. Then $S \backslash C$ is a maximal proper Γ-ideal of S. We will show that for every $a \in C, C \subseteq(a)_{T}$. Let $a \in C$. Suppose $C \nsubseteq(a)_{T}$. Since $C \nsubseteq(a)_{T}$ and $\varnothing \neq C \subset S,(a)_{T}$ is a proper Γ-ideal of S. Thus, $a \in(a)_{T} \subseteq M^{*}=S \backslash C$, and so $a \in S \backslash C$, i.e., $a \notin C$. This is a contradiction. Hence $C \subseteq(a)_{T}$ for every $a \in C$. We will show that for every $a \in C, S \backslash C \subseteq(a)_{T}$. Suppose that $S \backslash C \not \subset\left(a^{*}\right)_{T}$ for some $a^{*} \in C$. Then $\left(a^{*}\right)_{T} \neq S$, and so $\left(a^{*}\right)_{T}$ is a proper Γ-ideal of S. Thus, $a^{*} \in\left(a^{*}\right)_{T} \subseteq M^{*}=S \backslash C$, and so $a^{*} \in S \backslash C$, i.e., $a^{*} \notin C$. This is a contradiction. Hence $S \backslash C \subseteq(a)_{T}$ for every $a \in C$. Since $S \backslash C \subseteq(a)_{T}$ and $C \subseteq(a)_{T}$ for every $a \in C$, we have $S=(S \backslash C) \cup C \subseteq(a)_{T} \subseteq S$. So $S=(a)_{T}$ for every $a \in C$. Thus, $\{a\}$ is a two-sided base of S. Next, let A be a two-sided base of S. We will show that $a=b$ for every $a, b \in A$. Suppose that there exists $a, b \in A$ such that $a \neq b$. Since A is a two-sided base of $S, a \in A \subseteq C$ and $a \in C$. So $S=(a)_{T}$. Since $a \neq b$ and $b \in S=(a \cup S \Gamma a \cup a \Gamma S \cup(S \Gamma a) \Gamma S]=(a] \cup(S \Gamma a \cup a \Gamma S \cup(S \Gamma a) \Gamma S]$, $b \in(a]$ or $b \in(S \Gamma a \cup a \Gamma S \cup(S \Gamma a) \Gamma S]$. If $b \in(a]$, then $b \leq a$ by Lemma 3.1, $b \leq_{I} a$. This is a contradiction. So $b \in(S \Gamma a \cup a \Gamma S \cup(S \Gamma a) \Gamma S]$. By Lemma 3.2, $a=b$. This is a contradiction. Therefore, every two-sided base of S is one-element base.

Conversely, assume that every two-sided base of S is a one-element base. Then $S=(a)_{T}$ for every $a \in C$. To show that $S \backslash C=M^{*}$, since $\varnothing \neq C \subset S, \varnothing \neq S \backslash C \subset S$. By Theorem 4.5, $S \backslash C$ is a proper Γ-ideal of S. Next, let M be a proper Γ-ideal of S such that $S \backslash C \subset M \subset S$. Since $S \backslash C \subset M$, there exists $x \in M$ such that $x \notin S \backslash C$, i.e., $x \in C$. We have $x \in M \cap C$. So $M \cap C \neq \varnothing$. Let $b \in M \cap C$. Since $b \in M, S \Gamma b \subseteq S \Gamma M \subseteq M$, $b \Gamma S \subseteq M \Gamma S \subseteq M$ and $(S \Gamma b) \Gamma S \subseteq(S \Gamma M) \Gamma S \subseteq M \Gamma S \subseteq M, b \cup S \Gamma b \cup b \Gamma S \cup(S \Gamma b) \Gamma S$ $\subseteq M$. We have $(b)_{T}=(b \bigcup S \Gamma b \cup b \Gamma S \bigcup(S \Gamma b) \Gamma S] \subseteq(M]=M$. Since $b \in C$, by assumption, we have $(b)_{T}=S$. So $S=(b)_{T} \subseteq M \subset S$. Thus, $M=S$. This is a contradiction. Hence $S \backslash C$ is a maximal proper Γ-ideal of S. Finally, let B be a Γ-ideal of S such that $B \nsubseteq S \backslash C$. Since $B \nsubseteq S \backslash C$, there exists $x \in B$ such that $x \notin S \backslash C$, i.e., $x \in C$. So $B \cap C \neq \varnothing$. Let $c \in B \cap C$. Since $c \in B, S \Gamma c \subseteq S \Gamma B \subseteq B, c \Gamma S \subseteq B \Gamma S \subseteq B$ and $(S \Gamma c) \Gamma S \subseteq(S \Gamma B) \Gamma S \subseteq B \Gamma S \subseteq B, c \cup S \Gamma c \cup c \Gamma S \cup(S \Gamma c) \Gamma S \subseteq B$. We have $(c)_{T}=(c \cup S \Gamma c \cup c \Gamma S \cup(S \Gamma c) \Gamma S] \subseteq(B]=B$. Since $c \in C, S=(c)_{T} \subseteq B \subseteq S$. Thus, $S=B$. Therefore, $S \backslash C=M^{*}$.
Theorem 4.7. Let S be an ordered LA-Г-semigroup with left identity. If e is a left identity of S, then $\{e\}$ is a two-sided base of S.

Proof: Assume that e is a left identity of S. Let $A=\{e\}$. We will show that A is a two-sided base of S. To show that $S=(A)_{T}$, since e is a left identity of S, by Lemma 2.1, we have $S=e \Gamma S=S \Gamma e$. Since $S=S \Gamma e$, we have $(S \Gamma e) \Gamma S=(S \Gamma e) \Gamma(S \Gamma e)=$ $(S \Gamma S) \Gamma(e \Gamma e)=S \Gamma e$. So $e \cup S \Gamma e \cup e \Gamma S \cup(S \Gamma e) \Gamma e=S$. Thus, $(A)_{T}=(e \cup S \Gamma e \cup e \Gamma S \cup$ $(S \Gamma e) \Gamma S]=(S]=S$. Hence $(A)_{T}=S$. Clearly, A is a minimal subset of S with the property $S=(A)_{T}$. Therefore, A is a two-sided base of S.

In Examples 3.1 and 3.2, it is observed that every two-sided base of an ordered LA-Γ-semigroup with left identity is one-element base. This leads to proving the following corollary. From Theorem 4.3 and Theorem 4.7, we can easily obtain the following result.
Corollary 4.2. Let S be an ordered LA-Г-semigroup with left identity. Then every twosided base of S is one-element base.

In Example 3.2, we have the all two-sided bases of S are $A_{1}=\{c\}, A_{2}=\{d\}$ and $A_{3}=\{e\}$. Then $S \backslash C=\{a, b\}$ is a maximal proper Γ-ideal of S containing every proper Γ-ideal of S. We have the following result is combining Theorem 4.6 and Corollary 4.2.

Theorem 4.8. Let S be an ordered $L A-\Gamma$-semigroup with left identity. Then $S \backslash C$ is a maximal proper Γ-ideal of S containing all proper Γ-ideals of S.

Proof: Let S be an ordered LA- Γ-semigroup with left identity. By Corollary 4.2, we have every two-sided base of S is one-element base. Since every two-sided base of S is one element base, by Theorem 4.6, we obtain $S \backslash C=M^{*}$. Therefore, $S \backslash C$ is a maximal proper Γ-ideal of S containing all proper Γ-ideals of S.
5. Conclusion. In this paper, we focus on the results for two-sided bases of ordered LA- Γ-semigroups with left identity. We show in Corollary 4.2 that every two-sided base of an ordered LA- Γ-semigroup with left identity is one-element base. Finally, we prove in Theorem 4.8 that the complement of union of all two-sided base of an ordered LA-Γ-semigroup with left identity is the maximal proper Γ-ideal. In the future work, we can study other results in this algebraic structures. Moreover, we may use the essential (m, n)-ideal of semigroups defined in [10] to define essential (m, n)-bases of semigroups and study their properties.

REFERENCES

[1] I. Fabrici, One-sided bases of semigroups, Matematicky Casop., vol.22, pp.286-290, 1972.
[2] T. Changphas and P. Kummoon, On Γ-semigroups containing two-sided bases, KKU Science Journal, vol.46, no.1, pp.154-161, 2018.
[3] M. K. Sen, On Γ-semigroups, Proc. of the International Conference on Algebra and Its Application, pp.301-308, 1981.
[4] M. A. Kazim and N. Naseeruddin, On almost semigroups, Alig. Bull. Math., vol.2, no.1, pp.1-7, 1972.
[5] T. Shah and I. Rehman, On Γ-ideals and Γ-bi-ideals in Γ-AG-groupoids, Int. J. Algebra, vol.4, no.6, pp.267-276, 2010.
[6] M. Khan, V. Amjid, G. Zaman and N. Yaqoob, Characterizations of ordered Γ-Aber-Grassmann's groupoids, Discuss. Math. Gen. Algebra Appl., vol.34, no.1, pp.55-73, 2014.
[7] M. A. Ansari, Roughness applied to generalized F-ideals of ordered LA-Г-ideals, Commu. Math. Appl., vol.10, no.1, pp.71-84, 2019.
[8] A. Basar, A note on (m, n)-Г-ideals of ordered LA- Γ-semigroups, Konuralp J. Math., vol.7, no.1, pp.107-111, 2019.
[9] C. Akin, Fuzzy LA- (m, n)-Г-ideals in LA- - -semigroups, Adv. Fuzzy Sets Syst., vol.4, no.6, pp.211223, 2017.
[10] R. Chinram and T. Gaketem, Essential (m, n)-ideal and essential fuzzy (m, n)-ideals in semigroups, ICIC Express Letters, vol.15, no.10, pp.1037-1044, 2021.

