

วารสารวิทยาศาสตร์บูรพา ปีที่ 26 (ฉบับที่ 3) กันยายน – ธันวาคม พ.ศ. 2564 BURAPHA SCIENCE JOURNAL Volume 26 (No.3) September – December 2021

บทความวิจัย

Γ - กึ่งกรุปอันดับที่บรรจุฐานสองด้าน

On Ordered $\,\Gamma$ - Semigroups Containing Two-sided Bases

้วิชญาพร จันทะนัน, กชกร นวดไธสง และ สุชาติ เจริญรัมย์

Wichayaporn Jantanan, Kodchakorn Nuadthaisong และ Suchat Jaroenram^{*} ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยราชภัฏบุรีรัมย์ Department of Mathematics, Facully of Science, Buriram Rajabhat University Received : 2 September 2020 Revised : 15 December 2020 Accepted : 26 February 2021

บทคัดย่อ

ในบทความวิจัยนี้ศึกษาแนวคิดของ แกมมากึ่งกรุปอันดับที่บรรจุฐานสองด้าน โดยจะศึกษาคล้ายกับแนวคิดของ แกมมากึ่งกรุปที่บรรจุฐานสองด้าน ซึ่ง ธวัช ช่างผัส และ พิสิทธิ์ คำมูล ได้ทำการศึกษาในปี ค.ศ. 2018 นอกจากนี้ เรายังพิสูจน์ ว่าทุก ๆ แกมมากึ่งกรุปอันดับที่บรรจุฐานสองด้านจะมีสมาชิกเท่ากัน

คำสำคัญ : แกมมากึ่งกรุปอันดับ ; ฐานสองด้าน ; แกมมาไอดีล

Abstract

The aim of this paper is to study the concept of ordered Γ -semigroups containing two-sided bases that are studied analogously to the concept of Γ -semigroups containing two-sided bases considered by T. Changpas and P. Kummoon in 2018. Moreover, we prove any ordered Γ -semigroups containing two-sided bases have the same cadinality.

Keywords : ordered $\Gamma\operatorname{-semigroup}$; two-sided bases ; $\Gamma\operatorname{-Ideal}$

*Corresponding author. E-mail: 600112210021@bru.ac.th

บทความวิจัย

Introduction

The notion of two-sided bases of semigroups has been introduced and studied by I.Fabrici. (Fabrici, 1975). Indeed, a non-empty subset A of a semigroup S is said to be a two-sided base of S if A satisfies the two following conditions :

- (1) $S = A \cup SA \cup AS \cup SAS;$
- (2) If B is a subset of A such that $S = B \cup SB \cup BS \cup SBS$, then B = A.

The concept of a Γ -semigroup has been introduced by M. K. Sen. (Sen, 1981). The concept of Γ semigroups containing two-sided bases was firstly given by T. Changphas and P. Kummoon. (Thawhat & Pisit, 2018). Indeed, a non-empty subset A of s is called a two-sided base of S if it satisfies the two following conditions:

(1) $S = A \cup S \Gamma A \cup A \Gamma S \cup S \Gamma A \Gamma S;$

(2) If *B* is a subset of *A* such that $S = B \cup S \Gamma B \cup B \Gamma S \cup S \Gamma B \Gamma S$, then B = A.

The main purpose of this paper is to introduce the concept and extend the result to an ordered Γ -semigroup containing two-sided bases. It will get the form of ordered Γ -semigroups containing two-sided bases is a nonempty subset A of an ordered Γ -semigroup S is called a two-sided base of S if it satisfies the two following conditions:

(1) $S = (A \cup S\Gamma A \cup A\Gamma S \cup S\Gamma A\Gamma S];$

(2) If *B* is a subset of *A* such that $S = (B \cup S\Gamma B \cup B\Gamma S \cup S\Gamma B\Gamma S]$, then B = A.

We now recall some definitions and results used throughtout the paper.

Definition 1.1. (Thawhat & Pisit, 2018). Let *S* and Γ be any two non-empty sets. Then *S* is called a Γ -semigroup if there exists a mapping from $S \times \Gamma \times S \to S$, written as $(a, \gamma, b) \mapsto a\gamma b$, satisfying the following identity $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

Definition 1.2. (Abdul *et al.*, 2017). Let (S, Γ, \leq) be a Γ -semigroup. For A and B be two non-empty subsets of S, the set product $A\Gamma B$ is defined to be the set of all elements $a\gamma b$ in S where $a \in A, b \in B$ and $\gamma \in \Gamma$. That is

$$A\Gamma B := \Big\{ a\gamma \, b \, \Big| \, a \in A, b \in B, \gamma \in \Gamma \Big\}.$$

Also we write $B\Gamma a$ instead of $B\Gamma \{a\}$, and we write $a\Gamma B$ instead of $\{a\}\Gamma B$, for $a \in S$.

Definition 1.3. (Niovi, 2017). An ordered Γ -semigroup is a Γ -semigroup S together with a partial order relation \leq on S such that $a \leq b$ implies $a\gamma c \leq b\gamma c$ and $c\gamma a \leq c\gamma b$ for all $a, b, c \in S$ and $\gamma \in \Gamma$.

(lampan, 2009). For an element a of an ordered Γ -semigroup S, define $(a] := \{t \in S \mid t \leq a\}$ and for a subset H of S, define $(H] = \bigcup_{h \in H} (h]$, that is $(H] = \{t \in S \mid t \leq h \text{ for some } h \in H\}$. Then the following holds true:

1. $H \subseteq (H] = ((H)];$

2. For any subsets A and B of S with $A \subseteq B$, we have $(A] \subseteq (B]$;

- 3. For any subsets A and B of S, we have $(A \cup B] = (A] \cup (B]$;
- 4. For any subsets A and B of S, we have $(A \cap B] \subseteq (A] \cap (B]$.

Definition 1.4. (Niovi, 2017). A non-empty subset A of an ordered Γ -semigroup (S, Γ, \leq) is called a Γ -subsemigroup of S if $A\Gamma A \subseteq A$.

Definition 1.5. (Kwon and Lee, 1998). A non-empty subset A of an ordered Γ -semigroup (S, Γ, \leq) is called a left (resp. right) Γ -ideal of S if it satisfies :

(1) $S\Gamma A \subseteq A$ (resp. $A\Gamma S \subseteq A$);

(2) if $a \in A$ and $b \leq a$ for $b \in S$ implies $b \in A$.

Both a left Γ -ideal and a right Γ -ideal of an ordered Γ -semigroup S is called a Γ -ideal of S.

Definition 1.6. (Kostaq & Edmond, 2006). An Γ -ideal A of an ordered Γ -semigroup (S, Γ, \leq) is called proper if $A \neq S$. A proper Γ -ideal A of S is called maximal if for each Γ -ideal T of S such that $A \subseteq T$, we have T = A or T = S, i.e., there is no Γ -ideal T of S such that $A \subset T \subset S$.

Proposition 1.7. (Kostaq & Edmond, 2006). Let (S, Γ, \leq) be an ordered Γ -semigroup and $\{A_i \mid i \in I\}$ a family of Γ -ideals of S. If $\cap \{A_i \mid i \in I\} \neq \emptyset$, then the set $\cap \{A_i \mid i \in I\}$ is a Γ -ideal of S and $\cup \{A_i \mid i \in I\}$ is also a Γ -ideal of S.

It is known (Niovi, 2017) that if denoted by I(A), is the smallest Γ -ideal of S containing A, and I(A) is of the form $I(A) = (A \cup S\Gamma A \cup A\Gamma S \cup S\Gamma A\Gamma S]$. In particular, for an element $a \in S$, we write $I(\{a\})$, I(a) which is called the principal Γ -ideal of S generated by a. Thus $I(a) = (a \cup S\Gamma a \cup a\Gamma S \cup S\Gamma a\Gamma S]$. Note that for any $b \in S$, we have $(S\Gamma b \cup b\Gamma S \cup S\Gamma b\Gamma S]$ is a Γ -ideal of S. Finally, if A and B are two Γ -ideals of S, then the union $A \cup B$ is a Γ -ideal of S.

Methods

We begin this section with the definitions of two-sided bases of ordered Γ -semigroups.

Definition 2.1. (Abul *et al.*, 2017). Let (S, Γ, \leq) be an ordered Γ -semigroup. A non-empty subset A of S is called a two-sided base of S if it satisfies the two following conditions :

(1) $S = (A \cup S\Gamma A \cup A\Gamma S \cup S\Gamma A\Gamma S];$

(2) If *B* is a subset of *A* such that $S = (B \cup S \Gamma B \cup B \Gamma S \cup S \Gamma B \Gamma S]$, then B = A.

We now provide some examples.

Example 2.2. (Chinnadurai & Arulmozhi, 2018). Let $S = \{a, b, c, d\}$ and $\Gamma = \{\alpha, \beta\}$ where α, β are define on S with the following Cayley tables:

α	a	b	с	d	β	a	b	с	d
a	a	a	a	a	a	a	a	a	a
b	a	b	c	d	b	a	b	c	d
с	a	c	c	c	с	a	с	с	С
d	a	c	с	с	d	a	b	с	d

 $\leq := \left\{ (a,a), (a,b), (a,c), (a,d), (b,b), (b,c), (b,d), (c,c), (d,c), (d,d) \right\}$

In (Chinnadurai & Arulmozhi, 2018). (S, Γ, \leq) is an ordered Γ -semigroup. It is easy to see that the two-sided bases of S are $\{b\}$ and $\{d\}$. But $\{b, d\}$ is not a two-sided base.

Example 2.3. (Subrahmanyeswara *et al.*, 2012). Let $S = \{a, b, c, d\}$ and $\Gamma = \{\alpha\}$ where α is defined on S with the following Cayley tables:

α	a	b	с	d
a	b	b	d	d
b	b	b	d	d
с	d	d	с	d
d	d	d	d	d

 $\leq \coloneqq \{(a,a),(b,b),(c,c),(d,d),(a,b),(d,b),(d,c)\}$

In (Subrahmanyeswara *et al.*, 2012). (S, Γ, \leq) is an ordered Γ -semigroup. It is easy to see that the two-sided bases of *S* is $\{a, c\}$. But $\{b\}$ and $\{d\}$ are not a two-sided bases.

In Example 2.2. and Example 2.3., it is observed that two-sided bases of S have same cardinality. This leads to prove in Theorem 3.4.

Hereafter, for any ordered Γ -semigroup (S, Γ, \leq) , we shall use the quasi-ordering which is defined as follows.

Definition 2.4. Let (S, Γ, \leq) be an ordered Γ -semigroup. We define a quasi-ordering \leq on S for any $a, b \in S$,

$$a \preceq_I b \Leftrightarrow I(a) \subseteq I(b).$$

We write $a \prec_I b$ if $a \preceq_I b$ but $a \neq b$. It is clear that, for any a, b in $S, a \leq b$ implies $a \preceq_I b$. Lemma 2.5. Let A be a two-sided base of an ordered Γ -semigroup (S, Γ, \leq) , and $a, b \in A$. If $a \in (S\Gamma b \cup b\Gamma S \cup S\Gamma b\Gamma S]$, then a = b.

Proof. Assume that $a \in (S\Gamma b \cup b\Gamma S \cup S\Gamma b\Gamma S]$, and suppose that $a \neq b$. Let $B = A \setminus \{a\}$. Since $a \neq b, b \in B$. To show that $I(A) \subseteq I(B)$, it suffices to show that $A \subseteq I(B)$. Let $x \in A$. There are two cases to consider. If $x \neq a$, then $x \in B$, and so $x \in I(B)$. If $x \neq a$, then by assumption we have $x = a \in (S\Gamma b \cup b\Gamma S \cup S\Gamma b\Gamma S] \subseteq I(b) \subseteq I(B)$. So we have $I(A) \subseteq I(B)$. Thus $S = I(A) \subseteq I(B) \subseteq S$. This is a contradiction. Hence a = b.

Results

In this part, the algebraic structure of an ordered Γ -semigroup containing two-sided bases will be presented.

Theorem 3.1. A non-empty subset A of an ordered Γ -semigroup (S, Γ, \leq) is a two-sided base of S if and only if A satisfies the two following conditions:

- (1) For any $x \in S$ there exists $a \in A$ such that $x \preceq_I a$;
- (2) For any $a, b \in A$, if $a \neq b$, then neither $a \leq_I b$ nor $b \leq_I a$.

Proof. Assume first that A is a two-sided base of S. Then I(A) = S. Let $x \in S$ Then $x \in I(A) = \bigcup_{a \in A} I(a)$, and so $x \in I(a)$ for some $a \in A$. This implies $I(x) \subseteq I(a)$. Hence $x \preceq_I a$. Hence condition (1) is true. Let $a, b \in A$ such that $a \neq b$ Suppose that $a \preceq_I b$. We set $B = A \setminus \{a\}$. Then $b \in B$. Let $x \in S$. By (1), there exists $c \in A$ such that $x \preceq_I c$. There are two cases to consider. If $c \neq a$, then $c \in B$, thus $I(x) \subseteq I(c) \subseteq I(B)$. Hence S = I(B). This is a contradiction. If $c \neq a$, then $x \preceq_I b$ hence $x \in I(B)$ since $b \in B$. We have S = I(B). This is a contradiction. The case $b \preceq_I a$ is proved similarly. Hence condition (2) is true.

Conversely, assume that the condition (1) and (2) hold. We will show that A is a two-sided base of s. To show that S = I(A). Let $x \in S$. By (1), then there exists $a \in A$ such that $I(x) \subseteq I(a)$. Then $x \in I(x) \subseteq I(a) \subseteq I(A)$. Thus $S \subseteq I(A)$, and S = I(A). Next it remains to show that A is a minimal subset of S with the property: S = I(A). Suppose that S = I(B) for some $B \subset A$. Since $B \subset A$, there exists $a \in A \setminus B$. So $a \notin (B]$. Since $a \in A \subseteq S = I(B)$ and $a \notin (B]$, it follows that $a \in (S\Gamma B \cup B\Gamma S \cup S\Gamma B\Gamma S]$. Since $a \in (S\Gamma B \cup B\Gamma S \cup S\Gamma B\Gamma S]$, we have $a \leq y$ for some $y \in S\Gamma B \cup B\Gamma S \cup S\Gamma B\Gamma S$. There are three cases to consider:

Case 1: $y \in B\Gamma S$. Then $y = b_1\gamma s$ for some $b_1 \in B, \gamma \in \Gamma$ and $s \in S$. Since $a \leq y$ and $y \in b_1 \cup S\Gamma b_1 \cup b_1\Gamma S \cup S\Gamma b_1\Gamma S$, we have $a \in (b_1 \cup S\Gamma b_1 \cup b_1\Gamma S \cup S\Gamma b_1\Gamma S]$. It follows that $I(a) \subseteq I(b_1)$. Hence, $a \leq_I b_1$. This is a contradiction.

Case 2: $y \in S\Gamma B$. Then $y = s\gamma b_2$ for some $b_2 \in B, \gamma \in \Gamma$ and $s \in S$. Since $a \leq y$ and $y \in b_2 \cup S\Gamma b_2 \cup b_2\Gamma S \cup S\Gamma b_2\Gamma S$, we have $a \in (b_2 \cup S\Gamma b_2 \cup b_2\Gamma S \cup S\Gamma b_2\Gamma S]$. It follows that $I(a) \subseteq I(b_2)$. Hence, $a \leq_I b_2$. This is a contradiction.

บทความวิจัย

Case 3: $y \in S\Gamma B\Gamma S$. Then $y = s_1\gamma_1 b_3\gamma_2 s_2$ for some $b_3 \in B, \gamma_1, \gamma_2 \in \Gamma$ and $s \in S$. Since $a \leq y$ and $y \in b_3 \cup S\Gamma b_3 \cup b_3\Gamma S \cup S\Gamma b_3\Gamma S$, we have $a \in (b_3 \cup S\Gamma b_3 \cup b_3\Gamma S \cup S\Gamma b_3\Gamma S]$. It follows that $I(a) \subseteq I(b_3)$. Hence $a \leq I_1 b_3$. This is a contradiction.

Therefore A is a two-sided base of S as required, and the proof is completed.

Theorem 3.2. Let A be a two-sided base of an ordered Γ -semigroup (S, Γ, \leq) such that I(a) = I(b) for some $a \in A$ and $b \in S$. If $a \neq b$, then S contains at least two two-sided bases.

Proof. Assume that $a \neq b$. Suppose that $b \in A$. Since $a \leq_{I} b$ and $a \neq b$, it follows that

 $a \in (S\Gamma b \cup b\Gamma S \cup S\Gamma b\Gamma S]$. By Lemma 2.5., we obtain a = b. This is a contradiction. Thus $b \in S \setminus A$. Let $B := (A \setminus \{a\}) \cup \{b\}$. Since $b \in B$, we have $b \notin A$, and $B \not\subseteq A$. Hence $A \neq B$. We will show that B is a two-sided base of S. To show that B satisfies (1) in Theorem 3.1., let $x \in S$. Since A is a two-sided base of S, there exists $c \in A$ such that $x \preceq_I c$. If $c \neq a$, then $c \in B$. If c = a, then $x \preceq_I a$. Since $a \preceq_I b$, $x \preceq_I a \preceq_I b$, we have $x \preceq_I b$. To show that B satisfies (2) in Theorem 3.1., let $c_1, c_2 \in B$ be such that $c_1 \neq c_2$. We will show that neither $c_1 \preceq_I c_2$ nor $c_2 \preceq_I c_1$. Since $c_1 \in B$ and $c_2 \in B$, we have $c_1 \in A \setminus \{a\}$ or $c_1 = b$ and $c_2 \in A \setminus \{a\}$ or $c_2 = b$. There are four cases to consider:

Case 1: $c_1 \in A \setminus \{a\}$ and $c_2 \in A \setminus \{a\}$. This implies neither $c_1 \preceq_I c_2$ nor $c_2 \preceq_I c_1$.

Case 2: $c_1 \in A \setminus \{a\}$ and $c_2 = b$. If $c_1 \preceq_I c_2$, then $c_1 \preceq_I b$. Since $b \preceq_I a$, $c_1 \preceq_I b \preceq_I a$. Thus $c_1 \preceq_I a$, a contradiction. If $c_2 \preceq_I c_1$, then $b \preceq_I c_1$. Since $a \preceq_I b$, $a \preceq_I b \preceq_I c_1$. So $a \preceq_I c_1$, a contradiction.

Case 3: $c_2 \in A \setminus \{a\}$ and $c_1 = b$. If $c_1 \preceq_I c_2$, then $b \preceq_I c_2$. Since $a \preceq_I b$, $a \preceq_I b \preceq_I c_2$. Hence

 $a \preceq_{I} c_{2}, \text{ a contradiction. If } c_{2} \preceq_{I} c_{1}, \text{ then } c_{2} \preceq_{I} b \text{ . Since } b \preceq_{I} a, c_{2} \preceq_{I} b \preceq_{I} a. \text{ Thus } c_{2} \preceq_{I} a, \text{ a contradiction.}$

Case 4: $c_1 = b$ and $c_2 = b$. This is impossible.

Thus B satisfies (1) and (2) in Theorem 3.1. Therefore B is a two-sided base of S.

Corollary 3.3. Let A be a two-sided base of an ordered Γ -semigroup (S, Γ, \leq) , and let $a \in A$. If I(x) = I(a) for some $x \in S$, $x \neq a$, then x belongs to a two-sided base of S, which is different from A.

Theorem 3.4. Let *A* and *B* be any two-sided bases of an ordered Γ -semigroup (S, Γ, \leq) . Then *A* and *B* have the same cardinality.

Proof. Let $a \in A$. Since *B* is a two-sided base of *S*, by Theorem 3.1.(1), there exists an element $b \in B$ such that $a \leq_I b$. Since *A* is a two-sided base of *S*, by Theorem 3.1.(1), there exists $a^* \in A$ such that $b \leq_I a^*$. So $a \leq_I b \leq_I a^*$, i.e., $a \leq_I a^*$. By Theorem 3.1.(2), $a = a^*$. Hence I(a) = I(b). Define a mapping

 $\varphi: A \to B$ by $\varphi(a) = b$ for all $a \in A$.

To show that φ is well-defined, let $a_1, a_2 \in A$ be such that $a_1 = a_2, \varphi(a_1) = b_1$ and $\varphi(a_2) = b_2$ for some

วารสารวิทยาศาสตร์บูรพา ปีที่ 26 (ฉบับที่ 3) กันยายน – ธันวาคม พ.ศ. 2564 BURAPHA SCIENCE JOURNAL Volume 26 (No.3) September – December 2021

บทความวิจัย

 $b_1, b_2 \in B$. Then $I(a_1) = I(b_1)$ and $I(a_2) = I(b_2)$. Since $a_1 = a_2$, $I(a_1) = I(a_2)$. Hence $I(a_1) = I(a_2) = I(b_1) = I(b_2)$, i.e., $b_1 \preceq_I b_2$ and $b_2 \preceq_I b_1$. By Theorem 3.1.(2), $b_1 = b_2$. Thus $\varphi(a_1) = \varphi(a_2)$. Therefore, φ is well-defined. We will show that φ is one-one. Let $a_1, a_2 \in A$ be such that $\varphi(a_1) = \varphi(a_2)$. Since $\varphi(a_1) = \varphi(a_2)$, $\varphi(a_1) = \varphi(a_2) = b$ for some $b \in B$. So $I(a_2) = I(a_1) = I(b)$. Since $I(a_2) = I(a_1)$, $a_1 \preceq_I a_2$ and $a_2 \preceq_I a_1$. This implies $a_1 = a_2$. Therefore, φ is one-one. We will show that φ is onto. Let $b \in B$. Since A is a two-sided base of S, by Theorem 3.1.(1), there exists an element $a \in A$ such that $b \preceq_I a$. Since B is a two-sided base of S, by Theorem 3.1.(1), there exists an element $b^* \in B$ such that $a \preceq_I b^*$. So $b \preceq_I a \preceq_I b^*$, i.e., $b \preceq_I b^*$. This implies $b = b^*$. Hence I(a) = I(b). Thus $\varphi(a) = b$. Therefore, φ is onto. This completes the proof.

If a two-sided base A of an ordered Γ -semigroup (S, Γ, \leq) is a Γ -ideal of S, then

 $S = (A \cup S\Gamma A \cup A\Gamma S \cup S\Gamma A\Gamma S] \subseteq (A] = A$. Hence S = A. The converse statement is obvious. Then we conclude that.

Remark 3.5. It is observed that a two-sided base A of an ordered Γ -semigroup (S, Γ, \leq) is a two-sided Γ -ideal of S if and only if A = S.

In Example 2.2., it is easy to see that $\{d\}$ is a two-sided base of S, but it is not a Γ -subsemigroup of SThis shows that a two-sided base of an ordered Γ -semigroup need not to be a Γ -subsemigroup in (Niovi, 2018). A non-empty subset A of S is called an idempotent if $A = (A\Gamma A]$ or $a = a\gamma a$ for all $a \in A$ and $\gamma \in \Gamma$. The following theorem gives necessary and sufficient conditions of a two-sided base of S to be a Γ -subsemigroup S. **Theorem 3.6.** A two-sided base A of an ordered Γ -semigroup (S, Γ, \leq) is a Γ -subsemigroup if and only if $A = \{a\}$ with $a\gamma a = a$ for all $\gamma \in \Gamma$.

Proof. Assume that A is a Γ -subsemigroup of S. Let $a, b \in A$ and $\gamma \in \Gamma$. Since A is a Γ -subsemigroup of S, $a\gamma b \in A$. Setting $a\gamma b = c$; thus $c \in S\Gamma b \subseteq S\Gamma b \cup b\Gamma S \cup S\Gamma b\Gamma B \subseteq (S\Gamma b \cup b\Gamma S \cup S\Gamma b\Gamma B]$. By Lemma 2.5., c = b. So $a\gamma b = b$. Similarly, $c \in a\Gamma S \subseteq S\Gamma a \cup a\Gamma S \cup S\Gamma a\Gamma S \subseteq (S\Gamma a \cup a\Gamma S \cup S\Gamma a\Gamma S]$. By Lemma 2.5., c = a. So $a\gamma b = a$. We have a = b. Therefore, $A = \{a\}$ with $a\gamma a = a$ for all $a \in A$ and $\gamma \in \Gamma$. The converse statement is clear.

Notation. The union of all two-sided bases of an ordered Γ -semigroup (S, Γ, \leq) is denoted by R.

Theorem 3.7. Let (S, Γ, \leq) be an ordered Γ -semigroup. Then $S \setminus R$ is either empty set or a Γ -ideal of S.

Proof. Assume that $S \setminus R \neq \emptyset$. We will show that $S \setminus R$ is a Γ -ideal of S. Let $a \in S \setminus R$, $x \in S$ and $\gamma \in \Gamma$. To show that $x\gamma a \in S \setminus R$ and $a\gamma x \in S \setminus R$. Suppose that $x\gamma a \notin S \setminus R$. Then $x\gamma a \in R$. Hence $x\gamma a \in A$ for some a two-sided base A of S. We set $b = x\gamma a$ for some $b \in A$. Then $b \in S\Gamma a$. By $b \in S\Gamma a \subseteq a \cup S\Gamma a \cup a\Gamma S \cup S\Gamma a \cap a\Gamma S \subseteq (a \cup S\Gamma a \cup a\Gamma S \cup S\Gamma a\Gamma S] = I(a)$, it follow that $I(b) \subseteq I(a)$. Next we will show that $I(b) \subset I(a)$. Suppose that I(b) = I(a). Since $a \in S \setminus R$ and $b \in A$, $a \neq b$. Since I(b) = I(a) and Corollary 3.3, we conclude

วารสารวิทยาศาสตร์บูรพา ปีที่ 26 (ฉบับที่ 3) กันยายน – ธันวาคม พ.ศ. 2564 BURAPHA SCIENCE JOURNAL Volume 26 (No.3) September – December 2021

that $a \in R$. This is a contradiction. Thus $I(b) \subset I(a)$, i.e., $b \prec_I a$. Since A is a two-sided base of s and $a \in S \setminus R$, by Theorem 3.1.(1), there exists $d \in A$ such that $a \preceq_I d$. Since $b \prec_I a \preceq_I d$, $b \preceq_I d$. This is a contradiction to the condition (2) of Theorem 3.1., so we have $x\gamma a \in S \setminus R$. Similarly, to show that $a\gamma x \in S \setminus R$. Suppose that $a\gamma x \in R$, then $a\gamma x \in A$ for some a two-sided base A of s. Let $a\gamma x = c$ for some $c \in A$. Then $c \in a\Gamma S \subseteq a \cup S\Gamma a \cup a\Gamma S \cup S\Gamma a\Gamma S \subseteq (a \cup S\Gamma a \cup a\Gamma S \cup S\Gamma a\Gamma S] = I(a)$, it follow that $I(c) \subseteq I(a)$. Next, we will show that $I(c) \subset I(a)$. Suppose that I(c) = I(a). Since $a \in S \setminus R$ and $c \in A$, $a \neq c$. Since I(c) = I(a) and Corollary 3.3., we conclude that $a \in R$. This is a contradiction. Thus $I(c) \subset I(a)$, i.e., $c \prec_I a$. Since A is a two-sided base of s and $a \in S \setminus R$, by Theorem 3.1.(1), there exists $e \in A$ such that $a \preceq_I e$. Since $c \prec_I a \preceq_I e$, $c \preceq_I e$. This is a contradiction to the condition (2) of Theorem 3.1., so we have $a\gamma x \in S \setminus R$. Let $x \in S \setminus R$, $y \in S$ such that $y \leq x$. Next we will show that $y \in S \setminus R$. Suppose that $y \in R$, then $y \in A$ for some a two-sided base A of s. Since A is a two-sided base A of s. Since $A \preceq_I e$. Since $x \in S \setminus R$, $y \in S$ such that $y \leq x$. Next we will show that $y \in S \setminus R$. Suppose that $y \in R$, then $y \in A$ for some a two-sided base A of s. Since $A \preceq_I z$. So we have $y \preceq_I z$. This is a contradiction. Therefore $y \notin R$ then $y \in S \setminus R$. Hence $S \setminus R$ is a $\Gamma = I(a)$ of S.

Notation. Let M^* be a proper Γ -ideal of an ordered Γ -semigroup (S, Γ, \leq) containing every proper Γ -ideal of S.

Theorem 3.8. Let (S, Γ, \leq) be an ordered Γ -semigroup and $\varnothing \neq R \subset S$. The following statements are equivalent:

- (1) $S \setminus R$ is a maximal proper Γ -ideal of S;
- (2) For every element $a \in R$, $R \subseteq I(a)$;
- (3) $S \setminus R = M^*$;
- (4) Every two-sided base of S is a one-element base.

Proof. (1) \Leftrightarrow (2). Assume that $S \setminus R$ is a maximal proper Γ -ideal of S. Let $a \in R$. Suppose that $R \not\subseteq I(a)$. Since $R \not\subseteq I(a)$, there exists $x \in R$ such that $x \notin I(a)$. Hence $x \notin S \setminus R$. Since $x \notin I(a)$, $x \notin S \setminus R$ and $x \in S$, we have $(S \setminus R) \cup I(a) \subset S$. Thus $(S \setminus R) \cup I(a)$ is a proper Γ -ideal of S. Hence $S \setminus R \subset (S \setminus R) \cup I(a)$. This contradicts to the maximality of $S \setminus R$.

Conversely, assume that for every element $a \in R, R \subseteq I(a)$. We will show that $S \setminus R$ is a maximal proper Γ -ideal of S. Since $a \in R$, $a \notin S \setminus R$. Hence $S \setminus R \subset S$. Since $R \subset S, S \setminus R \neq \emptyset$. By Theorem 3.7., $S \setminus R$ is a proper Γ -ideal of S. Suppose that M is a proper Γ -ideal of S such that $S \setminus R \subset M \subset S$. Since $S \setminus R \subset M$, there exists $x \in M$ such that $x \notin S \setminus R$, i.e., $x \in R$. Then $x \in M \cap R$. So $M \cap R \neq \emptyset$. Let $c \in M \cap R$. Then $c \in M$ and $c \in R$. Since $c \in M$, we have $S\Gamma c \subseteq S\Gamma M \subseteq M$, $c\Gamma S \subseteq M\Gamma S \subseteq M$ and $S\Gamma c\Gamma S \subseteq S\Gamma M\Gamma S \subseteq M$. Then $I(c) = (c \cup S\Gamma c \cup c\Gamma S \cup S\Gamma c\Gamma S] \subseteq M$. Since $c \in R$, by assumption we have $R \subseteq I(c)$. Hence

 $S = (S \setminus R) \cup R \subseteq (S \setminus R) \cup I(c) \subseteq M \subset S$. Thus M = S. This is a contradiction. Therefore $S \setminus R$ is a maximal proper Γ -ideal of S.

(3) \Leftrightarrow (4). Assume that $S \setminus R = M^*$. Since $S \setminus R = M^*$, $S \setminus R$ is a maximal proper Γ -ideal of S. By (1) \Leftrightarrow (2), for every $a \in R, R \subseteq I(a)$. Firstly, we will show that for every $a \in R, S \setminus R \subseteq I(a)$. Suppose that $S \setminus R \not\subseteq I(a)$ for some $a \in R$. Then $I(a) \neq S$. Hence I(a) is a proper Γ -ideal of S. Thus $I(a) \subseteq M^* = S \setminus R$. Then $I(a) \subseteq S \setminus R$. Since $a \in I(a), a \in S \setminus R$, i.e., $a \notin R$. This is a contradiction. Thus $S \setminus R \subseteq I(a)$ for every $a \in R$. Since $S \setminus R \subseteq I(a)$ and $R \subseteq I(a)$ for every $a \in R$, it follows that $S = (S \setminus R) \cup R \subseteq I(a) \cup I(a) =$ $I(a) \subseteq S$. So S = I(a) for every $a \in R$. Therefore, $\{a\}$ is a two-sided base of S. Let A be a two-sided base of S. We will show that a = b for all $a, b \in A$. Suppose that there exists $a, b \in A$ such that $a \neq b$. Since A is a twosided base of $S, A \subseteq R$. This is, $a \in R$. So S = I(a). Since $b \in S = I(a)$ and $b \neq a, b \in (S\Gamma a \cup a\Gamma S \cup S\Gamma a\Gamma S]$. By Lemma 2.5., a = b. This is a contradiction. Therefore, every two-sided base of S is an one element base.

Conversely, assume that every two-sided base of S is an one element base. Then S = I(a) for all $a \in R$. We will show that $S \setminus R = M^*$. The statement that $S \setminus R$ is a maximal proper Γ -ideal of S follows from the proof (1) \Leftrightarrow (2). Let M be a Γ -ideal of S such that M is not contained in $S \setminus R$. Then $R \cap M \neq \emptyset$. Let $a \in R \cap M$. Hence $a \in R$ and $a \in M$. So $S\Gamma a \subseteq S\Gamma M \subseteq M$, $a\Gamma S \subseteq M\Gamma S \subseteq M$ and $S\Gamma a\Gamma S \subseteq S\Gamma M\Gamma S$. So we have $I(a) = (a \cup S\Gamma a \cup a\Gamma S \cup S\Gamma a\Gamma S] \subseteq M$. Hence $S = I(a) \subseteq M \subseteq S$. Thus M = S. Therefore $S \setminus R = M^*$

(1) \Leftrightarrow (3). Assume that $S \setminus R$ is a maximal proper Γ -ideal of S. We will show that $S \setminus R = M^*$. Since $S \setminus R$ is a proper Γ -ideal of S, $S \setminus R \subseteq M^* \subset S$. By assumption, $S \setminus R = M^*$ or $S = M^*$. Since $S \neq M^*$, so we have $S \setminus R = M^*$. The converse statement is obvious.

Discussion

In this research, we investigated the notion of ordered Γ -semigroup containing two-sided bases. We proved that a non-empty subset A of an ordered Γ -semigroup (S,Γ,\leq) is a two-sided base of S if and only if Asatisfies the two following conditions (1) for any $x \in S$ there exists $a \in A$ such that $x \leq_I a$; (2) for any $a, b \in A$, if $a \neq b$, then neither $a \leq_I b$ nor $b \leq_I a$. Also, we showed that if A and B be any two-sided bases of an ordered Γ -semigroup (S,Γ,\leq) . Then A and B have the same cardinality.

Conclusions

In this research, we have resulted in ordered Γ -semigroup that is analogously in Γ -semigroup considered by T. Changpas and P. Kummoon in 2018.

บทความวิจัย

References

- Abul Basar, M.Y. Abbasi and Sabahat Ali Khan. (2017). Some properties of covered Γ -ideal in po- Γ -semigroups. *International Journal of Pure and Applied Mathematics*, 115(2), 345-352.
- Chinnadurai, V., & Arulmozhi, K. (2018). Characterization of bipolar fuzzy ideal in ordered gamma semigroup. *Journal of the International Mathematical Virtual Institute, 8,* 141-156.

Fabrici, I. (1975). Two sided bases of semigroups. *Matematicky casopis*, 25(2), 173-178.

- Iampan, A. (2009). Characterizing Ordered Bi-Ideal in Ordered Γ-Semigroups. *International Journal of Mathematical Sciences and Informatics*, 4(1), 17-25.
- Kostaq Hila & Edmond Pisha. (2006). Charecterizations on ordered Γ -semigroups. *International Journal* of Pure and Applied Mathematics, 28(3), 423-439.
- Niovi Kehayopulu. (2011). On regular duo po-Γ-semigroup. *Mathematical Institute Slovak Academy of Sciences*, 61(6), 871-884.
- Kwon Y.I. and Lee S.K. (1998). On weakly prime ideals of ordered Γ -semigroup. *Comm. Korean Math. Soc.*, 13(2), 251-256.
- Niovi Kehayopulu. (2017). On intra-regular ordered Γ -semigroup. *European Journal of Pure and Applied Mathematics*, 10(4), 620-630.

Sen, M. K. (1981). On Γ -semigroup. Lecture Notes in Pure and Appl. Math., 91, 301-308.

- Subrahmanyeswara Rao Seetamraju, V.B., A. Anjaneyulu, A., & Madhusudana Rao, D. (2012). Po- Γ -ideals in Po- Γ -semigroup. *IOSR Journal of Mathematics*, 1(6), 39-51.
- Thawhat Chang phas & Pisit Kummoon. (2018). On Γ -Semigroup Containing Two-sided bases. *KKU Sci. J.*, *46*(1), 154-161.

วารสารวิทยาศาสตร์บูรพา ปีที่ 26 (ฉบับที่ 3) กันยายน – ธันวาคม พ.ศ. 256 BURAPHA SCIENCE JOURNAL Volume 26 (No.3) September – December 2021

บทความวิจัย

Thawhat Changphas & Pisit Kummoon. (2018). On left and right bases of a Γ -semigroup. *International Journal of Pure and Applied Mathematics*, 118(1), 125-135.