Original Article

On interior bases of a semigroup

Wichayaporn Jantanan ${ }^{1}$, Natee Raikham ${ }^{1}$, Ronnason Chinram ${ }^{2}$, and Aiyared Iampan ${ }^{3 *}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Buriram Rajabhat University, Mueang, Buriram, 31000 Thailand
${ }^{2}$ Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand
${ }^{3}$ Department of Mathematics, School of Science, University of Phayao, Mueang, Phayao, 56000 Thailand

Received: 1 September 2021; Revised: 5 October 2021; Accepted: 26 October 2021

Abstract

The main purpose of this paper is to introduce the concept of interior bases of a semigroup. In addition, we give a characterization when a non-empty subset of a semigroup is an interior base of a semigroup and give necessary and sufficient conditions of an interior base of a semigroup to be a subsemigroup.

Keywords: semigroup, interior ideal, interior base, quasi-order

1. Introduction and Preliminaries

The notion of interior ideals of a semigroup has been introduced by Lajos (1976). Muhiuddin (2019) applied the cubic set theory to interior ideals of a semigroup. Muhiuddin and Mahboob (2020) introduced and studied int-soft interior ideals over the soft sets in ordered semigroups. Muhiuddin studied the concept of different types of ideals in semigroups, see (Muhiuddin, 2018; Muhiuddin, Mahboob, \& Mohammad Khan, 2019). Based on the notion of interior ideals of a semigroup generated by a non-empty subset of a semigroup. The notion of one-sided bases of a semigroup was first introduced by Tamura (1955). Later, Fabrici (1972) studied the structure of a semigroup containing one-sided bases. After that, the concept of two-sided bases of a semigroup was studied by Fabrici (1975). Changphas and Summaprab (2014) introduced the concept of two-sided bases of an ordered semigroup. Recently, Kummoon and Changphas (2017) introduced the concept of bi-bases of a semigroup. The main purpose of this paper is to introduce the concept which is called interior bases of a semigroup. Also, we give a characterization when a non-empty subset of a semigroup is an interior base of the semigroup. Finally, we give necessary and sufficient conditions of an interior base of a semigroup to be a subsemigroup.

A semigroup is a pair (S, \cdot) in which S is a non-empty set and - is a binary associative operation on S, i.e., the equation $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ holds for all $x, y, z \in S$.

Throughout this paper, unless stated otherwise, we write the semigroup operation as multiplication and we mostly omit it typographically, i.e., we write S instead of $(S, \cdot), x y$ instead of $x \cdot y, x(y z)$ instead of $x \cdot(y \cdot z)$ and so on.

For A and B are non-empty subsets of a semigroup S, we define the set product $A B$ of A and B, by

$$
A B=\{a b \mid a \in A, b \in B\} .
$$

[^0]For $a \in S$, we write $B a$ for $B\{a\}$, and similarly for $a B$.
Definition 1.1. (Lajos, 1976) A non-empty subset A of a semigroup S is called a subsemigroup of S if $A A \subseteq A$.
Definition 1.2. (Lajos, 1976) A subsemigroup A of a semigroup S is called an interior ideal of S if $S A S \subseteq A$.
Lemma 1.3. Let S be a semigroup and A_{i} be a subsemigroup of S for all $i \in I$. If $\bigcap_{i \in I} A_{i} \neq \varnothing$, then $\bigcap_{i \in I} A_{i}$ is a subsemigroup of S.

Proof. Assume that $\bigcap_{i \in I} A_{i} \neq \varnothing$. Let $a, b \in \bigcap_{i \in I} A_{i}$. Then $a, b \in A_{i}$ for all $i \in I$. Since A_{i} is a subsemigroup of S for all $i \in I$, so $a b \in A_{i}$ for all $i \in I$. Thus $a b \in \bigcap_{i \in I} A_{i}$. Therefore, $\bigcap_{i \in I} A_{i}$ is a subsemigroup of S.

Lemma 1.4. Let S be a semigroup and A_{i} be an interior ideal of S for all $i \in I$. If $\bigcap_{i \in I} A_{i} \neq \varnothing$, then $\bigcap_{i \in I} A_{i}$ is an interior ideal of S.

Proof. Assume that $\bigcap_{i \in I} A_{i} \neq \varnothing$. By Lemma 1.3, $\bigcap_{i \in I} A_{i}$ is a subsemigroup of S. Next, we will show that $S\left(\bigcap_{i \in I} A_{i}\right) S \subseteq \bigcap_{i \in I} A_{i}$. Let $x \in S\left(\bigcap_{i \in I} A_{i}\right) S$. Then $x=s_{1} a s_{2}$ for some $s_{1}, s_{2} \in S$ and $a \in \bigcap_{i \in I} A_{i}$. Since $a \in \bigcap_{i \in I} A_{i}$, we have $a \in A_{i}$ for all $i \in I$, where A_{i} is an interior ideal of S for all $i \in I$. So we have $x=s_{1} a s_{2} \in S\left(A_{i}\right) S \subseteq A_{i}$ for all $i \in I$. Thus $x \in \bigcap_{i \in I} A_{i}$. Therefore, $\bigcap_{i \in I} A_{i}$ is an interior ideal of S.

Definition 1.5. Let S be a semigroup and let A be a non-empty subset of S. Then, the intersection of all interior ideals of S containing A is the smallest interior ideal of S generated by A, denoted by $(A)_{I}$.

Lemma 1.6. Let S be a semigroup and let A be a non-empty subset of S. Then,
$(A)_{I}=A \cup A A \cup S A S$.
Proof. Let $B=A \cup A A \cup S A S$. Consider,

$$
\begin{aligned}
B B & =(A \cup A A \cup S A S)(A \cup A A \cup S A S) \\
& =A A \cup A A A \cup A S A S \cup A A A \cup A A A A \cup A A S A S \cup(S A S) A \cup S A S A A \cup S A S S A S \\
& \subseteq A A \cup S A S \\
& =A A \cup S A S \subseteq B .
\end{aligned}
$$

Thus B is a subsemigroup of S. Next, consider

$$
\begin{aligned}
S B S & =S(A \cup A A \cup S A S) S \\
& =(S A \cup S A A \cup S S A S) S \\
& =S A S \cup S A A S \cup S S A S S \\
& \subseteq S A S \cup S A S \cup S A S=S A S \subseteq B .
\end{aligned}
$$

Thus $S B S \subseteq B$. Hence, B is an interior ideal of S containing A. Finally, let C be an interior ideal of S containing A. Clearly, $A \subseteq C$. Since C is a subsemigroup of S, we have $A A \subseteq C C \subseteq C$. Since C is an interior ideal of S, we have $S A S \subseteq S C S \subseteq C$. Thus $B=A \cup A A \cup S A S \subseteq C$. Hence, B is the smallest interior ideal of S containing A.

2. Main Results

In this part, the definition of interior bases of a semigroup and the algebraic structure of a semigroup containing interior bases will be presented.

Definition 2.1. Let S be a semigroup. A non-empty subset A of S is called an interior base of S if it satisfies the following two conditions:
(1) $S=A \cup A A \cup S A S$, i.e., $S=(A)_{I}$;
(2) if B is a subset of A such that $S=(B)_{I}$, then $B=A$.

Example 2.2. (Bussaban \& Changhas, 2016) Let $S=\{a, b, c, d, f\}$ be a semigroup with the binary operation defined by:

\times	a	b	c	d	f
a	a	a	a	a	a
b	a	b	a	d	a
c	a	f	c	c	f
d	a	b	d	d	b
f	a	f	a	c	a

The interior bases of S are $\{b\},\{c\},\{d\}$, and $\{f\}$.
Example 2.3. (Yaqoob, Aslam, \& Chinram, 2012) Let $S=\{0,1,2,3\}$ be a semigroup with the binary operation defined by:

\times	0	1	2	3
0	0	2	2	3
1	2	1	2	3
2	2	2	2	3
3	3	3	3	3

The interior base of S is $\{0,1\}$. But $\{0\}$ and $\{1\}$ are not interior bases of S.
First, we have the following useful lemma.
Lemma 2.4. Let A be an interior base of a semigroup S, and let $a, b \in A$. If $a \in b b \cup S b S$, then $a=b$.
Proof. Assume that $a \in b b \cup S b S$, and suppose that $a \neq b$. Let $B=A \backslash\{a\}$. Then $B \subset A$. Since $a \neq b$, we have $b \in B$. We will show that $(B)_{I}=S$. Clearly, $(B)_{I} \subseteq S$. Next, let $x \in S$. Then, by $(A)_{I}=S$, we have $x \in A \cup A A \cup S A S$. There are three cases to consider:
Case 1: $x \in A$.
Subcase 1.1: $x \neq a$. Then $x \in B \subseteq(B)_{I}$.
Subcase 1.2: $x=a$. By assumption, we have $x=a \in b b \cup S b S \subseteq B B \cup S B S \subseteq(B)_{I}$.
Case 2: $x \in A A$. Then $x=a_{1} a_{2}$ for some $a_{1}, a_{2} \in A$.
Subcase 2.1: $a_{1} \neq a$ and $a_{2} \neq a$. Then $a_{1}, a_{2} \in B$. We have $x=a_{1} a_{2} \in B B \subseteq(B)_{I}$.
Subcase 2.2: $a_{1}=a$ and $a_{2} \neq a$. By assumption and $a_{2} \in B$, we have

$$
x=a_{1} a_{2}=a_{1} a \in(b b \cup S b S) B \subseteq(B B \cup S B S) B=B B B \cup S B S B \subseteq S B S \cup S B S=S B S \subseteq(B)_{I} .
$$

Subcase 2.3: $a_{1} \neq a$ and $a_{2}=a$. Then $a_{1} \in B$ and by assumption, we have

$$
x=a_{1} a_{2}=a a_{2} \in B(b b \cup S b S) \subseteq B(B B \cup S B S)=B B B \cup B S B S \subseteq S B S \cup S B S=S B S \subseteq(B)_{I} .
$$

Subcase 2.4: $a_{1}=a$ and $a_{2}=a$. By assumption, we have

$$
x=a_{1} a_{2}=a a \in(b b \cup S b S)(b b \cup S b S)=b b b b \cup b b S b S \cup S b S b b \cup S b S S b S
$$

$$
\subseteq B B B B \cup B B S B S \cup S B S B B \cup S B S S B S
$$

$$
\subseteq S B S \cup S B S \cup S B S \cup S B S=S B S \subseteq(B)_{I}
$$

Case 3: $x \in S A S$. Then $x=s_{1} a_{3} s_{2}$ for some $s_{1}, s_{2} \in S$ and $a_{3} \in A$.

Subcase 3.1: $a_{3} \neq a$. Then $a_{3} \in B$. We have $x=s_{1} a_{3} s_{2} \in S B S \subseteq(B)_{I}$.
Subcase 3.2: $a_{3}=a$. By assumption, we have

$$
x=s_{1} a_{3} s_{2} \in S(b b \cup S b S) S \subseteq S(B B \cup S B S) S=(S B B \cup S S B S) S=S B B S \cup S S B S S \subseteq S B S \subseteq(B)_{I} .
$$

So, we obtain $S \subseteq(B)_{I}$. This implies $(B)_{I}=S$, which is a contradiction since A is an interior base of S. Thus $a=b$.

Lemma 2.5. Let A be an interior base of a semigroup S, and let $a, b, c \in A$. If $a \in c b \cup S c b S$, then $a=b$ or $a=c$.
Proof. Assume that $a \in c b \cup S c b S$. Suppose that $a \neq b$ and $a \neq c$. Setting $B=A \backslash\{a\}$. Then $B \subset A$. Since $a \neq b$ and $a \neq c$, we have $b, c \in B$. To show that $(A)_{I} \subseteq(B)_{I}$. Let $x \in(A)_{I}$. Then $x \in A \cup A A \cup S A S$. There are three cases to consider:
Case 1: $x \in A$.
Subcase 1.1: $x \neq a$. Then $x \in B \subseteq(B)_{I}$.
Subcase 1.2: $x=a$. By assumption, we have

$$
x=a \in c b \cup S c b S \subseteq B B \cup S B B S \subseteq B B \cup S B S \subseteq(B)_{I} .
$$

Case 2: $x \in A A$. Then $x=a_{1} a_{2}$ for some $a_{1}, a_{2} \in A$.
Subcase 2.1: $a_{1} \neq a$ and $a_{2} \neq a$. Then $a_{1}, a_{2} \in B$. We have $x=a_{1} a_{2} \in B B \subseteq(B)_{I}$.
Subcase 2.2: $a_{1}=a$ and $a_{2} \neq a$. By assumption and $a_{2} \in B$, we have
$x=a_{1} a_{2} \in(c b \cup S c b S) B \subseteq(B B \cup S B B S) B=B B B \cup S B B S B \subseteq S B S \subseteq(B)_{I}$.
Subcase 2.3: $a_{1} \neq a$ and $a_{2}=a$. Then $a_{1} \in B$ and by assumption, we have
$x=a_{1} a_{2} \in B(c b \cup S c b S) \subseteq B(B B \cup S B B S)=B B B \cup B S B B S \subseteq S B S \subseteq(B)_{I}$.
Subcase 2.4: $a_{1}=a$ and $a_{2}=a$. By assumption, we have

$$
\begin{aligned}
x & =a_{1} a_{2} \in(c b \cup S c b S)(c b \cup S c b S)=c b c b \cup c b S c b S \cup S c b S c b \cup S c b S S c b S \\
& \subseteq B B B B \cup B B S B B S \cup S B B S B B \cup S B B S S B B S \subseteq S B S \subseteq(B)_{I} .
\end{aligned}
$$

Case 3: $x \in S A S$. Then $x=s_{1} a_{3} s_{2}$ for some $s_{1}, s_{2} \in S$ and $a_{3} \in A$.
Subcase 3.1: $a_{3} \neq a$. Then $a_{3} \in B$. We have $x=s_{1} a_{3} s_{2} \in S B S \subseteq(B)_{I}$.
Subcase 3.2: $a_{3}=a$. By assumption, we have
$x=s_{1} a_{3} s_{2} \in S(c b \cup S c b S) S \subseteq S(B B \cup S B B S) S=S B B S \cup S S B B S S \subseteq S B S \subseteq(B)_{I}$.
From both cases, we obtain $(A)_{I} \subseteq(B)_{I}$. Since A is an interior base of S, we have $S=(A)_{I} \subseteq(B)_{I} \subseteq S$. Thus $S=(B)_{I}$, which is a contradiction. Therefore, $a=b$ or $a=c$.

To give a characterization when a non-empty subset of a semigroup is an interior base of a semigroup, we need the concept of a quasi-order defined as follows:

Definition 2.6. Let S be a semigroup. Define a quasi-order \leq_{I} on S by, for any $a, b \in S$,
$a \leq_{I} b \Leftrightarrow(a)_{I} \subseteq(b)_{I}$.
The following example shows that the order \leq_{I} defined above is not, in general, a partial order.
Example 2.7. From Example 2.2, we have that $(b)_{I} \subseteq(c)_{I}$ (i.e., $\left.b \leq_{I} c\right)$ and $(c)_{I} \subseteq(b)_{I}$ (i.e., $c \leq_{I} b$), but $b \neq c$. Thus \leq_{I} is not a partial order on S.

Lemma 2.8. Let A be an interior base of a semigroup S. If $a, b \in A$ such that $a \neq b$, then neither $a \leq_{I} b$ nor $b \leq_{I} a$.
Proof. Assume that $a, b \in A$ such that $a \neq b$. Suppose that $a \leq_{I} b$. Then $a \in(a)_{I} \subseteq(b)_{I}$. Since $a \in(b)_{I}=b \cup b b \cup S b S$ and $a \neq b$, so we have $a \in b b \cup S b S$. By Lemma 2.4, $a=b$. This is a contradiction. The case $b \leq_{I} a$ can be proved similarly. Thus $a \leq_{I} b$ and $b \leq_{I} a$ are false.

Lemma 2.9. Let A be an interior base of a semigroup S. Let $a, b, c \in A$ and $s \in S$.
(1) If $a \in b c \cup b c b c \cup S b c S$, then $a=b$ or $a=c$.
(2) If $a \in \operatorname{sbcs} \cup s b c s s b c s \cup S s b c s S$, then $a=b$ or $a=c$.

Proof. (1) Assume that $a \in b c \cup b c b c \cup S b c S$, and suppose that $a \neq b$ and $a \neq c$. Let $B=A \backslash\{a\}$. Then $B \subset A$. Since $a \neq b$ and $a \neq c$, we have $b, c \in B$. We will show that $(A)_{I} \subseteq(B)_{I}$. It suffices to show that $A \subseteq(B)_{I}$. Let $x \in A$. If $x \neq a$, then $x \in B \subseteq(B)_{I}$. So $x \in(B)_{I}$. If $x=a$, then by assumption, we have
$x=a \in b c \cup b c b c \cup S b c S \subseteq B B \cup B B B B \cup S B B S \subseteq B B \cup S B S \subseteq(B)_{I}$.
Thus $A \subseteq(B)_{I}$. This implies $(A)_{I} \subseteq(B)_{I}$. So $S=(A)_{I} \subseteq(B)_{I} \subseteq S$. Hence, $S=(B)_{I}$. This is a contradiction. Therefore, $a=b$ or $a=c$.
(2) Assume that $a \in \operatorname{sbcs} \cup s b c s s b c s \cup S s b c s S$, and suppose that $a \neq b$ and $a \neq c$. Let $B=A \backslash\{a\}$. Then $B \subset A$. Since $a \neq b$ and $a \neq c$, we have $b, c \in B$. We will show that $(A)_{I} \subseteq(B)_{I}$. It suffices to show that $A \subseteq(B)_{I}$. Let $x \in A$. If $x \neq a$, then $x \in B \subseteq(B)_{I}$. So $x \in(B)_{I}$. If $x=a$, then by assumption, we have
$x=a \in s b c s \cup s b c s s b c s \cup S s b c s S \subseteq S B B S \cup S B B S S B B S \cup S S B B S S \subseteq S B S \subseteq(B)_{I}$.
Thus $x \in(B)_{I}$, and so $A \subseteq(B)_{I}$. This implies $(A)_{I} \subseteq(B)_{I}$. So $S=(A)_{I} \subseteq(B)_{I} \subseteq S$, and hence, $S=(B)_{I}$. This is a contradiction. Therefore, $a=b$ or $a=c$.

Lemma 2.10. Let A be an interior base of a semigroup S.
(1) For any $a, b, c \in A$, if $a \neq b$ and $a \neq c$, then $a \not 女_{I} b c$.
(2) For any $a, b, c \in A$ and $s \in S$, if $a \neq b$ and $a \neq c$, then $a \not \AA_{I}$ sbcs.

Proof. (1) Let $a, b, c \in A$, where $a \neq b$ and $a \neq c$. Suppose that $a \leq_{I} b c$. Then $a \in(a)_{I} \subseteq(b c)_{I}$. Since $a \in(b c)_{I}=b c \cup b c b c \cup S b c S$, by Lemma 2.9(1), we have $a=b$ or $a=c$. This contradicts to assumption. Thus $a \not \searrow_{I} b c$.
(2) Let $a, b, c \in A$ and $s \in S$, where $a \neq b$ and $a \neq c$. Suppose that $a \leq_{I} s b c s$. Then $a \in(a)_{I} \subseteq(s b c s)_{I}=s b c s \cup s b c s s b c s \cup S s b c s S$. By Lemma 2.9(2), it follows that $a=b$ or $a=c$. This contradicts to assumption. Thus $a \not \leq_{I}$ sbcs.

Lemma 2.11. Let A be an interior base of a semigroup S. For any $a, b \in A$ and $s_{1}, s_{2} \in S$, if $a \neq b$, then $a \not 又_{I} s_{1} b s_{2}$.
Proof. Let $a, b \in A$ and $s_{1}, s_{2} \in S$. Assume that $a \neq b$ and suppose that $a \leq_{I} s_{1} b s_{2}$. Then $a \in(a)_{I} \subseteq\left(s_{1} b s_{2}\right)_{I}$, and so $a \in\left(s_{1} b s_{2}\right)_{I}=s_{1} b s_{2} \cup s_{1} b s_{2} s_{1} b s_{2} \cup S s_{1} b s_{2} S$. Setting $B=A \backslash\{a\}$. Then $B \subset A$. Since $a \neq b$, we have $b \in B$. We will show that $(A)_{I} \subseteq(B)_{I}$. It suffices to show that $A \subseteq(B)_{I}$. Let $x \in A$. If $x \neq a$, then $x \in B \subseteq(B)_{I}$. So $x \in(B)_{I}$. If $x=a$, then by assumption, we have

$$
x=a \in s_{1} b s_{2} \cup s_{1} b s_{2} s_{1} b s_{2} \cup S s_{1} b s_{2} S \subseteq S B S \cup S B S S B S \cup S S B S S \subseteq S B S \subseteq(B)_{I} .
$$

Thus $x \in(B)_{I}$, and so $A \subseteq(B)_{I}$. This implies $(A)_{I} \subseteq(B)_{I}$. So $S=(A)_{I} \subseteq(B)_{I} \subseteq S$, and hence, $S=(B)_{I}$. This is a contradiction. Therefore, $a \not \not_{I} s_{1} b s_{2}$.

The following theorem characterizes when a non-empty subset of a semigroup S is an interior base of S.
Theorem 2.12. A non-empty subset A of a semigroup S is an interior base of S if and only if A satisfies the following conditions:
(1) For any $x \in S$,
(1.1) there exists $a \in A$ such that $x \leq_{I} a$; or
(1.2) there exist $a_{1}, a_{2} \in A$ such that $x \leq_{I} a_{1} a_{2}$; or
(1.3) there exist $a_{3} \in A, s_{1}, s_{2} \in S$ such that $x \leq_{I} s_{1} a_{3} s_{2}$.
(2) For any $a, b, c \in A$, if $a \neq b$ and $a \neq c$, then $a \not \AA_{1} b c$.
(3) For any $a, b \in A$ and $s_{1}, s_{2} \in S$, if $a \neq b$, then $a \not ڭ_{I} s_{1} b s_{2}$.

Proof. Assume that A is an interior base of S. Then $S=(A)_{I}$. To show that (1) holds, let $x \in S$. We have $x \in(A)_{I}=A \cup A A \cup S A S$. There are three cases to consider:

Case 1: $x \in A$. Then $x \leq_{I} x$.
Case 2: $x \in A A$. Then $x=a_{1} a_{2}$ for some $a_{1}, a_{2} \in A$. This implies $(x)_{I}=\left(a_{1} a_{2}\right)_{I}$. Hence, $x \leq_{I} a_{1} a_{2}$.
Case 3: $x \in S A S$. Then $x=s_{1} a_{3} s_{2}$ for some $a_{3} \in A, s_{1}, s_{2} \in S$. We obtain $(x)_{I}=\left(s_{1} a_{3} s_{2}\right)_{I}$. Hence, $x \leq_{I} s_{1} a_{3} s_{2}$. From both cases, we conclude that the condition (1) holds. The validity of (2) and (3) follow, respectively, from Lemma 2.10(1) and Lemma 2.11.

Conversely, assume that the conditions (1), (2) and (3) hold. We will show that A is an interior base of S. First, we claim that $S=(A)_{I}$. Clearly, $(A)_{I} \subseteq S$. By (1.1), we have $S \subseteq A$. From (1.2), we obtain $S \subseteq A A$. By (1.3), we have $S \subseteq S A S$. So $S \subseteq A \cup A A \cup S A S=(A)_{I}$. Thus $S=(A)_{I}$. Next, to show that A is a minimal subset of S with the property $S=(A)_{I}$, we suppose that $S=(B)_{I}$ for some $B \subset A$. Since $B \subset A$, there exists $x \in A$ such that $x \notin B$. Since $x \in A \subseteq S=(B)_{I}$ and $x \notin B$, we have $x \in B B \cup S B S$. There are two cases to consider:

Case 1: $x \in B B$. Then $x=a_{1} a_{2}$ for some $a_{1}, a_{2} \in B$. We have $a_{1}, a_{2} \in A$. Since $x \notin B$, so $x \neq a_{1}$ and $x \neq a_{2}$. Since $x=a_{1} a_{2}$, we obtain $(x)_{I} \subseteq\left(a_{1} a_{2}\right)_{I}$. Thus $x \leq_{I} a_{1} a_{2}$. This contradicts to (2).

Case 2: $x \in S B S$. Then $x=s_{1} a_{3} s_{2}$ for some $s_{1}, s_{2} \in S$ and $a_{3} \in B$. We have $a_{3} \in A$. Since $x \notin B$, so $x \neq a_{3}$. Since $x=s_{1} a_{3} s_{2}$, we obtain $(x)_{I} \subseteq\left(s_{1} a_{3} s_{2}\right)_{I}$. Thus $x \leq_{I} s_{1} a_{3} s_{2}$. This contradicts to (3).
Therefore, A is an interior base of S.
In Example 2.3, we have that $\{0,1\}$ is an interior base of S where as it is not a subsemigroup of S. The following theorem we find a condition for an interior base is a subsemigroup.

Theorem 2.13. Let A be an interior base of a semigroup S. Then A is a subsemigroup of S if and only if for any $a, b \in A$, $a b=a$ or $a b=b$.

Proof. Assume that A is a subsemigroup of S. Suppose that $a b \neq a$ and $a b \neq b$. Let $c=a b$. Then $c \neq a$ and $c \neq b$. Since $c=a b \in a b \cup S a b S$, by Lemma 2.5, we have $c=a$ or $c=b$. This is a contradiction.

The converse statement is obvious.

3. Conclusions

In this paper, we introduce the concept of interior bases of a semigroup by using the concepts of bases and interior ideals of a semigroup. The main theorems of this paper are Theorem 2.12 and Theorem 2.13. In Theorem 2.12, we give the necessary and sufficient condition for a nonempty subset of a semigroup to be an interior base. In Theorem 2.13, we give the necessary and sufficient condition for an interior base of a semigroup to be a subsemigroup.

In the future work, we can introduce other bases of a semigroup by using concepts of bases and other ideals of a semigroup.

References

Bussaban, L. \& Changphas, T. (2016). On (m, n) -ideals and (m, n) -regular ordered semigroups. Songkla nakarin Journal of Science and Technology, 38(2), 199-206.
Changphas, T. \& Summaprab, P. (2014). On two-sided bases of an ordered semigroup. Quasigroups and Related Systems, 22, 59-66.
Fabrici, I. (1972). One-sided bases of semigroups. Matematický Casopis, 22(4), 286-290.

Fabrici, I. (1975). Two-sided bases of semigroups. Matematický Casopis, 25(2), 173-178.
Kummoon, P. \& Changphas, T. (2017). On bi-bases of a semigroup. Quasigroups and Related Systems, 25, 87-94.
Lajos, S. (1976). (m, k, n)-ideals in semigroups. Notes on Semigroups II, (1), 12-19.
Muhiuddin, G. (2018). Neutrosophic subsemigroups. Annals of Communications in Mathematics, 1(1), 1-10.
Muhiuddin, G. (2019). Cubic interior ideals in semigroups. Applications and Applied Mathematics, 14(1), 463-474.
Muhiuddin, G. \& Mahboob, A. (2020). Int-soft ideals over the soft sets in ordered semigroups. AIMS Mathematics, 5(3), 2412-2423.
Muhiuddin, G., Mahboob, A. \& Mohammad Khan, N. (2019). A new type of fuzzy semiprime subsets in ordered semigroups. Journal of Intelligent and Fuzzy Systems, 37(3), 4195-4204.
Tamura, T. (1955). One-sided bases and translations of a semigroup. Mathematica Japonica, 3, 137-141.
Yaqoob, N., Aslam, M. \& Chinram, R. (2012). Rough prime bi-ideals and rough fuzzy prime bi-ideals in semigroups. Annals of Fuzzy Mathematics and Informatics, 3(2), 203-211.

[^0]: *Corresponding author
 Email address: aiyared.ia@up.ac.th

