ON LEFT AND RIGHT BASES OF LA-Γ-SEMIHYPERGROUPS WITH PURE LEFT IDENTITY

WICHAYAPORN JANTANAN¹, RONNASON CHINRAM² AND SARANYA HANGSAWAT^{3,*}

¹Department of Mathematics Faculty of Science Buriram Rajabhat University Nai Muang, Muang, Buriram 31000, Thailand wichayaporn.jan@bru.ac.th

> ²Division of Computational Science Faculty of Science Prince of Songkla University Hat Yai, Songkhla 90110, Thailand ronnason.c@psu.ac.th

³Mathematics Program Faculty of Science and Technology Songkhla Rajabhat University Muang, Songkhla 90000, Thailand *Corresponding author: saranya.nu@skru.ac.th

Received August 2021; accepted October 2021

ABSTRACT. In this paper, we introduce the concepts of left and right bases of LA- Γ -semihypergroups with pure left identity and study the structure of LA- Γ -semihypergroups with pure left identity containing left and right bases. We focus only on the results for right base of an LA- Γ -semihypergroup with pure left identity. For left base, we can show dually. We also give the necessary and sufficient condition for element in an LA- Γ -semihypergroup with pure left identity, to be a right base. Moreover, we show that all right bases of an LA- Γ -semihypergroup with pure left identity have the same cardinality. Finally, we show that the compliment of the union of all right bases of an LA- Γ -semihypergroup with pure left identity is maximal proper left Γ -hyperideal.

Keywords: LA- Γ -semihypergroup, Left Γ -hyperideal, Right base, Quasi-order, Maximal proper left Γ -hyperideal

1. Introduction. The algebraic hyperstructure notion was introduced in 1934 by Marty [1]. The attraction of hyperstructure is its special property that the image of each pair of a cross product of two sets is led to a set where in classical structures it is an element again, as follows.

Let S be a non-empty set and $P^*(S) = P(S) \setminus \{\emptyset\}$ denotes the set of all non-empty subsets of S. The map $\circ: S \times S \to P^*(S)$ is called a hyperoperation or join operation on the set S. A couple (S, \circ) is called a hypergroupoid. Let A and B be two non-empty subsets of S, and then we denote

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b, \quad a \circ A = \{a\} \circ A \text{ and } a \circ B = \{a\} \circ B.$$

In [2], Sen introduced the notion of a Γ -semigroup as a generalization of semigroups and ternary semigroups, as follows.

DOI: 10.24507/icicel.16.07.713

Let S and Γ be any two non-empty sets. Then S is called a Γ -semigroup if there is a mapping from $S \times \Gamma \times S$ into S, written as $(a, \alpha, b) \mapsto a\alpha b$, such that $(a\gamma b)\beta c = a\gamma(b\beta c)$ for all $a, b, c \in S$ and all $\gamma, \beta \in \Gamma$.

In 1955, the notion of a right (left) base of a semigroups was first introduced by Tamura [3]. Later, Fabrici [4] studied the structure of semigroups containing the right bases by using Tamura's results. Recently, the notions of left and right bases of Γ -semigroups were introduced by Changphas and Kummoon [5]. In this paper, we introduce the concepts of left and right bases of LA- Γ -semihypergroups with pure left identity. In particular, we study the structure of LA- Γ -semihypergroups with pure left identity containing the right bases and extend the results in Γ -semigroups to LA- Γ -semihypergroups. This structure was defined by Yaqoob and Aslam [8] which is a generalization of many algebraic structures, for example, commutative Γ -semigroups, LA-semigroups, comutative semihypergroups and LA-semihypergroups. They received some nice results in LA- Γ -semihypergroups.

2. **Preliminaries.** In this section, we provide definitions and results that are used throughout this paper. Those can be found in [6, 7, 8, 9].

Definition 2.1. Let S and Γ be any two non-empty sets. Then S is called a left almost Γ -semihypergroup (LA- Γ -semihypergroup) if every $\gamma \in \Gamma$ is a hyperoperation on S, i.e., $x\gamma y \subseteq S$, for every $x, y \in S$. And for every $\alpha, \beta \in \Gamma$ and $x, y, z \in S$ we have

$$(x\alpha y)\beta z = (z\alpha y)\beta x$$

The law $(x\alpha y)\beta z = (z\alpha y)\beta x$ is called left invertive law. For A and B be two non-empty subsets of an LA- Γ -semihypergroup S, we define

$$A\gamma B = \bigcup \{ a\gamma b \mid a \in A, b \in B \text{ and } \gamma \in \Gamma \}$$

also

$$A\Gamma B = \bigcup_{\gamma \in \Gamma} A\gamma B = \bigcup \{a\gamma b \mid a \in A, b \in B \text{ and } \gamma \in \Gamma \}.$$

Throughout the paper, S stands for an LA- Γ -semihypergroup unless otherwise specified.

Suggest that the notion of LA- Γ -semihypergroups is a generalization of commutative semigroups, commutative semihypergroups and of commutative Γ -semigroups.

Example 2.1. [8] Let $S = \{1, 2, 3\}$ and $\Gamma = \{\alpha, \beta\}$ be the sets of binary hyperoperations defined below:

α	1	2	3	β	1	2	3
1	$\{1,3\}$	$\{1, 2\}$	$\{1,3\}$	1	$\{1,3\}$	$\{1, 2, 3\}$	$\{1, 3\}$
2	$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{1, 2, 3\}$	2	$\{1, 2, 3\}$	$\{1, 2\}$	$\{2, 3\}$
3	$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{1, 2, 3\}$	3	$\{1, 2, 3\}$	$\{2, 3\}$	$\{1,2\}$

Clearly S is not a Γ -semihypergroup because $\{1, 2, 3\} = (1\alpha 1)\beta 3 \neq 1\alpha(1\beta 3) = \{1, 3\}$. Thus, S is an LA- Γ -semihypergroup because it satisfies the left invertive law.

Every LA- Γ -semihypergroup satisfies the law $(a\alpha b)\beta(c\gamma d) = (a\alpha c)\beta(b\gamma d)$ for all $a, b, c, d \in S$ and $\alpha, \beta, \gamma \in \Gamma$. This law is known as Γ -hypermedial law [8].

Definition 2.2. Let S be an LA- Γ -semihypergroup. An element $e \in S$ is called a left identity (resp. pure left identity) if $a \in e\gamma a$ (resp. $a = e\gamma a$) for all $a \in S$ and $\gamma \in \Gamma$.

By Example 2.1, elements 1 and 2 in S are left identities of S but not pure left identity of S.

Example 2.2. Let $S = \{x_1, x_2, x_3, x_4\}$ and $\Gamma = \{\beta\}$ be the sets of binary hyperoperations defined below:

β	x_1	x_2	x_3	x_4
x_1	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_4\}$
x_2	${x_3}$	$\{x_2, x_3\}$	$\{x_2, x_3\}$	$\{x_4\}$
x_3	$\{x_2\}$	$\{x_2, x_3\}$	$\{x_2, x_3\}$	$\{x_4\}$
x_4	$\{x_4\}$	$\{x_4\}$	$\{x_4\}$	$\{x_4\}$

Clearly S is not a Γ -semihypergroup because $\{x_2\} = (x_2\beta x_1) \beta x_1 \neq x_2\beta (x_1\beta x_1) = \{x_3\}$. Thus, S is an LA- Γ -semihypergroup because it satisfies the left invertive law. Here x_1 is a left identity of S; moreover x_1 is a pure left identity of S.

Lemma 2.1. Let S be an LA- Γ -semihypergroup with pure left identity e, then $(a\alpha b)\beta(c\gamma d) = (d\alpha c)\beta(b\gamma a)$ holds for all $a, b, c, d \in S$ and $\alpha, \beta, \gamma \in \Gamma$.

Proof: Let S be an LA- Γ -semihypergroup with pure left identity e. Then for all $a, b, c, d \in S$ and $\alpha, \beta, \gamma \in \Gamma$, we have

$$\begin{aligned} (a\alpha b)\beta(c\gamma d) &= ((e\gamma a)\alpha b)\beta((e\alpha c)\gamma d) \\ &= ((b\gamma a)\alpha e)\beta((d\alpha c)\gamma e) \quad \text{(by left invertive law)} \\ &= ((b\gamma a)\alpha(d\alpha c))\beta(e\gamma e) \quad \text{(by Γ-hypermedial law)} \\ &= ((e\gamma e)\alpha(d\alpha c))\beta(b\gamma a) \quad \text{(by left invertive law)} \\ &= (e\alpha(d\alpha c))\beta(b\gamma a) \\ &= (d\alpha c)\beta(b\gamma a) \end{aligned}$$

This completes the proof.

The law $(a\alpha b)\beta(c\gamma d) = (d\alpha c)\beta(b\gamma a)$ is called a Γ -hyperparamedial law.

Lemma 2.2. If S is an LA- Γ -semihypergroup with pure left identity e, then $S\Gamma S = S$.

Proof: Clearly, $S\Gamma S \subseteq S$. Next, to show that $S \subseteq S\Gamma S$. Let $x \in S$, and then for any $\gamma \in \Gamma$, we have $x = e\gamma x \subseteq S\Gamma S$. Thus, $S \subseteq S\Gamma S$. Hence, $S\Gamma S = S$.

Definition 2.3. Let S be an LA- Γ -semihypergroup.

(1) A non-empty subset A of S is called a sub LA- Γ -semihypergroup of S if $x\gamma y \subseteq A$ for all $x, y \in A$ and $\gamma \in \Gamma$.

(2) A non-empty subset A of S is called a left (resp. right) Γ -hyperideal of S if $S\Gamma A \subseteq A$ (resp. $A\Gamma S \subseteq A$).

(3) A left Γ -hyperideal A of S is called proper if $A \neq S$.

(4) A proper left Γ -hyperideal A of S is called maximal if for any left Γ -hyperideal B of S such that $A \subseteq B$ implies A = B or B = S.

Lemma 2.3. Let S be an LA- Γ -semihypergroup and A_i be a left Γ -hyperideal of S for each $i \in I$, and then the following statements hold.

(1) If $\bigcap_{i \in I} A_i \neq \emptyset$, then $\bigcap_{i \in I} A_i$ is a left Γ -hyperideal of S.

(2) $\bigcup_{i \in I} A_i$ is a left Γ -hyperideal of S.

Proof: (1) Assume that $\bigcap_{i\in I} A_i \neq \emptyset$. To show that $S\Gamma\left(\bigcap_{i\in I} A_i\right) \subseteq \bigcap_{i\in I} A_i$, let $x \in S\Gamma\left(\bigcap_{i\in I} A_i\right)$. Then $x \in s\gamma a_1$ for some $s \in S$, $\gamma \in \Gamma$ and $a_1 \in \bigcap_{i\in I} A_i$. Since $a_1 \in \bigcap_{i\in I} A_i$, we obtain $a_1 \in A_i$ for all $i \in I$. Since A_i is a left Γ -hyperideal of S for all $i \in I$, we have $x \in s\gamma a_1 \subseteq S\Gamma A_i \subseteq A_i$, for all $i \in I$. So $x \in \bigcap_{i\in I} A_i$. Hence, $S\Gamma\left(\bigcap_{i\in I} A_i\right) \subseteq \bigcap_{i\in I} A_i$. Therefore, $\bigcap_{i\in I} A_i$ is a left Γ -hyperideal of S.

(2) To show that $\bigcup_{i \in I} A_i$ is a left Γ -hyperideal of S, let $x \in S\Gamma \left(\bigcup_{i \in I} A_i\right)$. Then $x \in s\gamma a_1$ for some $s \in S$, $\gamma \in \Gamma$ and $a_1 \in \bigcup_{i \in I} A_i$. Since $a_1 \in \bigcup_{i \in I} A_i$, we obtain $a_1 \in A_i$ for some $i \in I$. Since A_i is a left Γ -hyperideal of S for all $i \in I$, $x \in s\gamma a_1 \subseteq S\Gamma A_i \subseteq A_i \subseteq \bigcup_{i \in I} A_i$. Thus, $x \in \bigcup_{i \in I} A_i$. Hence, $S\Gamma \left(\bigcup_{i \in I} A_i\right) \subseteq \bigcup_{i \in I} A_i$. Therefore, $\bigcup_{i \in I} A_i$ is a left Γ hyperideal of S.

Definition 2.4. Let A be a non-empty subset of an LA- Γ -semihypergroup S. The intersection of all left Γ -hyperideals of S containing A, is the smallest left Γ -hyperideal of S generated by A and is denoted by $(A)_L$.

Lemma 2.4. Let A be a non-empty subset of LA- Γ -semihypergroup S with pure left identity e. Then

$$(A)_L = A \cup S\Gamma A.$$

Proof: Let $B = A \cup S\Gamma A$. First, consider $S\Gamma B = S\Gamma(A \cup S\Gamma A)$ $= S\Gamma A \cup S\Gamma(S\Gamma A)$ $= S\Gamma A \cup (S\Gamma S)\Gamma(S\Gamma A)$ (by Lemma 2.2) $= S\Gamma A \cup (A\Gamma S)\Gamma(S\Gamma S)$ (by Γ -hyperparamedial law) $= S\Gamma A \cup (A\Gamma S)\Gamma S$ $= S\Gamma A \cup (S\Gamma S)\Gamma A$ (by left invertive law) $= S\Gamma A \cup S\Gamma A = S\Gamma A \subseteq B.$

Thus, B is a left Γ -hyperideal of S containing A. Next, let C be a left Γ -hyperideal of S containing A. We obtain $A \subseteq C$, and so $S\Gamma A \subseteq S\Gamma C \subseteq C$. Thus, $B = A \cup S\Gamma A \subseteq C$. Hence, B is the smallest left Γ -hyperideal of S containing A. Therefore, $(A)_L = A \cup S\Gamma A$. \Box

3. Main Results. We begin this section with the definition of a right base of an LA- Γ -semihypergroup with pure left identity as follows.

Definition 3.1. Let S be an LA- Γ -semihypergroup with pure left identity. A non-empty subset A of S is called a right base of S if it satisfies the following two conditions.

(1) $S = A \cup S\Gamma A$, *i.e.*, $S = (A)_L$.

(2) If B is a subset of A such that $S = (B)_L$, then B = A.

For a left base of S it is defined dually.

By Example 2.2, S is an LA- Γ -semihypergroup with pure left identity. Then we have $\{x_1\}$ as the only one right base of S.

Example 3.1. Let $S = \{a, b, c, d\}$ and $\Gamma = \{\gamma\}$ be the sets of binary hyperoperations defined below:

γ	a	b	c	d
a	$\{a\}$	$\{b\}$	$\{c\}$	$\{d\}$
b	$\{c\}$	$\{a, b, c\}$	$\{a, b, c\}$	$\{d\}$
c	$\{b\}$	$\{a, b, c\}$	$\{a, b, c\}$	$\{d\}$
d	$\{d\}$	$\{d\}$	$\{d\}$	S

Clearly S is not a Γ -semihypergroup because $\{b\} = (b\gamma a)\gamma a \neq b\gamma(a\gamma a) = \{c\}$. Thus, S is an LA- Γ -semihypergroup because it satisfies the left invertive law and S is an LA- Γ -semihypergroup with pure left identity. Then, the right bases of S are $A = \{a\}, B = \{b\}, C = \{c\}$ and $D = \{d\}$. And the left bases of S are the same as the right bases of S.

Lemma 3.1. Let A be a right base of an LA- Γ -semihypergroup S with pure left identity and $a, b \in A$. If $a \in S\Gamma b$, then a = b.

Proof: Assume that $a \in S\Gamma b$ and suppose that $a \neq b$. Let $B = A \setminus \{a\}$, then $B \subset A$. Since $a \neq b, b \in B$. To show that $(A)_L \subseteq (B)_L$, let $x \in (A)_L = A \cup S\Gamma A$. Then $x \in A$ or $x \in S\Gamma A$. Let $x \in A$. If $x \neq a$, then $x \in B \subseteq B \cup S\Gamma B$. So $x \in (B)_L$. If x = a by assumption we have $x = a \in S\Gamma b \subseteq S\Gamma B \subseteq B \cup S\Gamma B$. So $x \in (B)_L$. Hence, $A \subseteq (B)_L$. Let $x \in S\Gamma A$. Then $x \in s\gamma c$ for some $s \in S, \gamma \in \Gamma$ and $c \in A$. If $c \neq a$, then $c \in B$. So $x \in s\gamma c \subseteq S\Gamma B \subseteq B \cup S\Gamma B = (B)_L$. Thus, $x \in (B)_L$. If c = a, then $c = a \in S\Gamma b \subseteq S\Gamma B$ So $x \in s\gamma c \subseteq S\Gamma(S\Gamma B)$

> $= (S\Gamma S)\Gamma(S\Gamma B)$ (by Lemma 2.2) $= (B\Gamma S)\Gamma(S\Gamma S)$ (by Γ -hyperparamedial law) $= (B\Gamma S)\Gamma S$ $= (S\Gamma S)\Gamma B$ (by left invertive law) $= S\Gamma B \subseteq (B)_L.$

Thus, $S\Gamma A \subseteq (B)_L$. Since $A \subseteq (B)_L$ and $S\Gamma A \subseteq (B)_L$, $(A)_L = A \cup S\Gamma A \subseteq (B)_L$. By $S = (A)_L \subseteq (B)_L \subseteq S$, so we obtain $(B)_L = S$. This contradicts to condition (2) of Definition 2.1. Therefore, a = b.

Let S be an LA- Γ -semihypergroup with pure left identity. Define a quasi-order on S by, for any $a, b \in S$,

$$a \leq_L b \Leftrightarrow (a)_L \subseteq (b)_L.$$

We write $a <_L b$ if $a \leq_L b$ but $a \neq b$, i.e., $(a)_L \subset (b)_L$.

In general, \leq_L is not a partial order. By Example 3.1, we have $(a)_L \subseteq (b)_L$, i.e., $a \leq_L b$ and $(b)_L \subseteq (a)_L$, i.e., $b \leq_L a$ but $a \neq b$. This shows that \leq_L is not a partial order.

The following theorem characterizes when a non-empty subset of an LA- Γ -semihypergroup with pure left identity, is a right base of an LA- Γ -semihypergroup with pure left identity.

Theorem 3.1. A non-empty subset A of an LA- Γ -semihypergroup S with pure left identity, is a right base if and only if A satisfies the following two conditions:

(1) for any $x \in S$, there exists $a \in A$ such that $x \leq_L a$;

(2) for any $a, b \in A$, if $a \neq b$, then neither $a \leq_L b$ nor $b \leq_L a$.

Proof: Assume that A is a right base of S. Then $S = (A)_L$. First, let $x \in S$, and then $x \in S = (A)_L = A \cup S\Gamma A$. We have $x \in A$ or $x \in S\Gamma A$. If $x \in A$, then $x \leq_L x$. If $x \in S\Gamma A$, then $x \in s\gamma a$ for some $s \in S$, $\gamma \in \Gamma$ and $a \in A$. Since $x \in s\gamma a \subseteq S\Gamma a \subseteq (a)_L$, $x \in (a)_L$. Since $x \in S\Gamma a$, $S\Gamma x \subseteq S\Gamma(S\Gamma a)$

$$= (S\Gamma S)\Gamma(S\Gamma a)$$
 (by Lemma 2.2)
$$= (a\Gamma S)\Gamma(S\Gamma S)$$
 (by Γ -hyperparamedial law)
$$= (a\Gamma S)\Gamma S$$

$$= (S\Gamma S)\Gamma a$$
 (by left invertive law)
$$= S\Gamma a \subseteq (a)_L.$$

We obtain $S\Gamma x \subseteq (a)_L$. Since $x \subseteq (a)_L$ and $S\Gamma x \subseteq (a)_L$, $(x)_L = x \cup S\Gamma x \subseteq (a)_L$. So $x \leq_L a$. Hence, the condition (1) holds. Next, let $a, b \in A$ be such that $a \neq b$. Suppose that $a \leq_L b$, and then $(a)_L \subseteq (b)_L$. Since $a \in (a)_L \subseteq (b)_L$ and $a \neq b$, $a \in S\Gamma b$, by Lemma 3.1, a = b. This is a contradiction. The case $b \leq_L a$ can be proved similarly. Thus, $a \leq_L b$ and $b \leq_L a$ are false. Hence, the condition (2) holds.

Conversely, assume that (1) and (2) hold. We will show that A is a right base of S. First, to show that $S = (A)_L$, let $x \in S$, by (1) there exists $a \in A$ such that $(x)_L \subseteq (a)_L$, then $x \in (x)_L \subseteq (a)_L \subseteq (A)_L$. So $S \subseteq (A)_L$, and $S = (A)_L$. Next, to show that A is a minimal subset of S with the property $S = (A)_L$. Let $B \subset A$ such that $S = (B)_L$. Since $B \subset A$, there exists $a \in A$ and $a \notin B$. Since $a \in A \subseteq S = (B)_L$ and $a \notin B$, we obtain $a \in S\Gamma B$. Then $a \in s\gamma b$ for some $s \in S$, $\gamma \in \Gamma$ and $b \in B$. By $a \in s\gamma b \subseteq S\Gamma b \subseteq$ $(b)_L$, so $a \in (b)_L$. Since $a \in S\Gamma b$, $S\Gamma a \subseteq S\Gamma(S\Gamma b)$

$$= (S\Gamma S)\Gamma(S\Gamma b)$$
 (by Lemma 2.2)
$$= (S\Gamma b)\Gamma(S\Gamma S)$$
 (by Γ -hyperparamedial law)
$$= (S\Gamma b)\Gamma S$$

 $= (S\Gamma S)\Gamma b$ (by left invertive law)

$$= S\Gamma b \subseteq (b)_L.$$

By $a \subseteq (b)_L$ and $S\Gamma a \subseteq (b)_L$, so $(a)_L = a \cup S\Gamma a \subseteq (b)_L$. Thus, $a \leq_L b$ where $a, b \in A$. This contradicts to the condition (2). Therefore, A is a right base of S. \Box

If a right base A of an LA- Γ -semihypergroup S with pure left identity, is a left Γ -hyperideal of S, then

$$S = A \cup S\Gamma A \subseteq A \cup A = A.$$

Hence, S = A. The converse statement is obvious. Then we conclude as the following.

Theorem 3.2. A right base A of an LA- Γ -semihypergroup S with pure left identity, is a left Γ -hyperideal of S if and only if A = S.

Definition 3.2. An LA- Γ -semihypergroup S is said to be a right singular if $y \in x\gamma y$ for all $x, y \in S$ and $\gamma \in \Gamma$.

Theorem 3.3. Let A be a right base of an LA- Γ -semihypergroup S with pure left identity. If A is a sub LA- Γ -semihypergroup of S, then A is right singular.

Proof: Assume that A is a sub LA- Γ -semihypergroup of S. Let $a, b \in A$ and let $\gamma \in \Gamma$. By assumption, $a\gamma b \subseteq A$. Set $c \in a\gamma b$ for some $c \in A$. Since $c \in a\gamma b \subseteq S\Gamma b$, by Lemma 3.1, we have c = b. Thus, $b \in a\gamma b$. Therefore, A is right singular.

The converse statement is not valid in general. By Example 3.1, we have $B = \{b\}$ as a right base of S such that B is right singular. Then B is not sub LA- Γ -semihypergroup of S because $B\Gamma B = \{a, b, c\} \not\subseteq B$.

Let S be an LA- Γ -semihypergroup, and let $\alpha \in \Gamma$. An element e of S is called an α -idempotent of S if $e \in e\alpha e$. Let $E_{\alpha}(S)$ denote the set of all α -idempotent of S, and let $E(S) = \bigcup_{\alpha \in \Gamma} E_{\alpha}(S)$.

By Theorem 3.3, we obtain the following corollary.

Corollary 3.1. Let A be a right base of an LA- Γ -semihypergroup S with pure left identity. If A is a sub LA- Γ -semihypergroup of S, then $E(S) \neq \emptyset$.

Proof: Assume that A is a sub LA- Γ -semihypergroup of S. Let $e \in A$ and let $\alpha \in \Gamma$. Then $e\alpha e \subseteq A$. By Theorem 3.3, we obtain $e \in e\alpha e$. Thus, e is an α -idempotent of S. Therefore, $E(S) \neq \emptyset$.

Theorem 3.4. The right bases of an LA- Γ -semihypergroup S with pure left identity have the same cardinality.

Proof: Let A and B be right bases of S. Let $a \in A$. Since B is a right base of S, by Theorem 3.1(1), there exists $b \in B$ such that $a \leq_L b$. Similarly, since A is a right base of S, there exists $a' \in A$ such that $b \leq_L a'$. Then $a \leq_L b \leq_L a'$, and $a \leq_L a'$. By Theorem 3.1(2), a = a'. Hence, $(a)_L = (b)_L$. Now, define a mapping

$$\varphi: A \to B; \quad \varphi(a) = b$$

for all $a \in A$. First, to show that φ is well-defined, let $a_1, a_2 \in A$ be such that $a_1 = a_2$, $\varphi(a_1) = b_1$ and $\varphi(a_2) = b_2$ for some $b_1, b_2 \in B$. Then $(a_1)_L = (b_1)_L$ and $(a_2)_L = (b_2)_L$. Since $a_1 = a_2$, $(a_1)_L = (a_2)_L$, so $(a_1)_L = (a_2)_L = (b_1)_L = (b_2)_L$. Thus, $b_1 \leq_L b_2$ and $b_2 \leq_L b_1$. By Theorem 3.1(2), $b_1 = b_2$. Hence, $\varphi(a_1) = \varphi(a_2)$. Therefore, φ is welldefined.

Next, to show that φ is one-to-one, let $a_1, a_2 \in A$ be such that $\varphi(a_1) = \varphi(a_2)$. Then $\varphi(a_1) = \varphi(a_2) = b$ for some $b \in B$. So, we obtain $(a_1)_L = (a_2)_L = (b)_L$. Since $(a_1)_L = (a_2)_L$, $a_1 \leq_L a_2$ and $a_2 \leq_L a_1$. By Theorem 3.1(2), $a_1 = a_2$. Therefore, φ is well-defined.

Finally, to show that φ is onto, let $b \in B$. Since A is a right base of S, by Theorem 3.1(1), there exists $a \in A$ such that $b \leq_L a$. Since B is a right base of S, by Theorem 3.1(1) there exists $b' \in B$ such that $a \leq_L b'$. So, we obtain $b \leq_L a \leq_L b'$ and $b \leq_L b'$. By

Theorem 3.1(2), b = b'. Thus, $(a)_L = (b)_L$. Hence, $\varphi(a) = b$. Therefore, φ is onto. This completes the proof.

Theorem 3.5. Let A be a right base of an LA- Γ -semihypergroup S with pure left identity and let $a \in A$. If $(a)_L = (b)_L$ for some $b \in S$ such that $a \neq b$, then b is an element of a right base of S which is different from A.

Proof: Assume that $(a)_L = (b)_L$ for some $b \in S$ such that $a \neq b$. Let $B = (A \setminus \{a\}) \cup \{b\}$, and then $B \neq A$. We will show that B is a right base of S. To show that B satisfies (1) in Theorem 3.1, let $x \in S$. Since A is a right base of S, by Theorem 3.1(1) there exists $c \in A$ such that $x \leq_L c$. If $c \neq a$, then $c \in B$. Thus, $x \leq_L c$ where $c \in B$. If c = a, then $(c)_L = (a)_L$. Since $(a)_L = (b)_L$, $(c)_L = (b)_L$. Thus, $(x)_L \subseteq (c)_L = (b)_L$. Hence, $x \leq_L b$ where $b \in B$. Next, to show that B satisfies (2) in Theorem 3.1, let $b_1, b_2 \in B$ be such that $b_1 \neq b_2$. Then there are four cases to consider.

Case 1: $b_1 \neq b$ and $b_2 \neq b$. Then $b_1, b_2 \in A$. Since A is a right base of S, neither $b_1 \leq_L b_2$ nor $b_2 \leq_L b_1$.

Case 2: $b_1 \neq b$ and $b_2 = b$. Then $b_1 \in A \setminus \{a\}$ and $(b_2)_L = (b)_L$. If $b_1 \leq_L b_2$, then $(b_1)_L \subseteq (b_2)_L = (b)_L = (a)_L$. So $b_1 \leq_L a$ where $b_1, a \in A$. This is a contradiction. If $b_2 \leq_L b_1$, then $(a)_L = (b)_L = (b_2)_L \subseteq (b_1)_L$. So $a \leq_L b_1$ where $b_1, a \in A$. This is a contradiction.

Case 3: $b_1 = b$ and $b_2 \neq b$. Then $(b_1)_L = (b)_L$ and $b_2 \in A \setminus \{a\}$. If $b_1 \leq_L b_2$, then $(a)_L = (b)_L = (b_1)_L \subseteq (b_2)_L$. So $a \leq_L b_2$ where $b_2, a \in A$. This is a contradiction. If $b_2 \leq_L b_1$, then $(b_2)_L \subseteq (b_1)_L = (b)_L = (a)_L$. So $b_2 \leq_L a$ where $b_2, a \in A$. This is a contradiction.

Case 4: $b_1 = b$ and $b_2 = b$. This is impossible. Therefore, *B* is a right base of *S* which $B \neq A$.

Theorem 3.6. Let A^* be the union of all right bases of an LA- Γ -semihypergroup S with pure left identity. If $S \setminus A^* \neq \emptyset$, then $S \setminus A^*$ is a left Γ -hyperideal of S.

Proof: Assume that $S \setminus A^* \neq \emptyset$. We will show that $S \setminus A^*$ is a left Γ -hyperideal of S. Let $x \in S$, $\gamma \in \Gamma$ and $a \in S \setminus A^*$. To show that $x\gamma a \subseteq S \setminus A^*$, suppose that $x\gamma a \not\subseteq S \setminus A^*$. Then there exist $b \in x\gamma a$ and $b \notin S \setminus A^*$, i.e., $b \in A^*$. So $b \in A$ for some a right base A of S. Since $b \in x\gamma a \subseteq S\Gamma a \subseteq (a)_L$, $S\Gamma b \subseteq S\Gamma(S\Gamma a)$

$$= (S\Gamma S)\Gamma(S\Gamma a)$$
 (by Lemma 2.2)
$$= (a\Gamma S)\Gamma(S\Gamma S)$$
 (by Γ -hyperparamedial law)
$$= (a\Gamma S)\Gamma S$$

$$= (S\Gamma S)\Gamma a$$
 (by left invertive law)
$$= S\Gamma a \subseteq (a)_L.$$

So $(b)_L = b \cup S\Gamma b \subseteq (a)_L$. Thus, $(b)_L \subseteq (a)_L$. If $(b)_L = (a)_L$, by Theorem 3.5, we obtain $a \in A^*$. This is a contradiction. Hence, $(b)_L \subset (a)_L$, i.e., $b <_L a$. Since A is a right base of S by Theorem 3.1(1), there exists $b_1 \in A$ such that $a \leq_L b_1$. Then $b <_L a \leq_L b_1$ and so $b \leq_L b_1$ where $b, b_1 \in A$. This contradicts to the condition (2) of Theorem 3.1. Hence, $x\gamma a \subseteq S \setminus A^*$. Therefore, $S \setminus A^*$ is a left Γ -hyperideal of S.

In Example 2.2, we have the union of all right base of S as $A^* = \{x_1\}$. Then $S \setminus A^* = \{x_2, x_3, x_4\}$ is a maximal proper left Γ -hyperideal of S. However, it turns out that this is true in general, when $A^* \neq S$ and $A^* \subseteq (a)_L$ for all $a \in A^*$. Then we will prove in Theorem 3.7.

Theorem 3.7. Let S be an LA- Γ -semihypergroup with pure left identity and let A^* be the union of all right bases of S such that $A^* \neq \emptyset$. Then $S \setminus A^*$ is a maximal proper left Γ -hyperideal of S if and only if $A^* \neq S$ and $A^* \subseteq (a)_L$ for all $a \in A^*$.

Proof: Let $S \setminus A^*$ be a maximal proper left Γ -hyperideal of S. Then $A^* \neq S$. Let $a \in A^*$. Suppose that $A^* \not\subseteq (a)_L$. Then there exist $x \notin (a)_L$ and $x \in A^*$, i.e., $x \notin S \setminus A^*$. We have $(S \setminus A^*) \cup (a)_L \subset S$. So $(S \setminus A^*) \cup (a)_L$ is a proper left Γ -hyperideal of S. This contradicts to the maximality of $S \setminus A^*$. Therefore, $A^* \subseteq (a)_L$.

Conversely, let $A^* \neq S$ and $A^* \subseteq (a)_L$ for all $a \in A^*$. Then, we obtain $\emptyset \neq A^* \subset S$, $\emptyset \neq S \setminus A^* \subset S$. By Theorem 3.6, $S \setminus A^*$ is a proper left Γ -hyperideal of S. Let L be a left Γ -hyperideal of S such that $S \setminus A^* \subseteq L \subseteq S$. Suppose that $S \setminus A^* \neq L$, and so $S \setminus A^* \subset L$. Then there exist $x \in L$ and $x \notin S \setminus A^*$, i.e., $x \in A^*$. So $L \cap A^* \neq \emptyset$. Let $a \in L \cap A^*$. Then $a \in L$ and $S\Gamma a \subseteq S\Gamma L \subseteq L$. So $(a)_L = a \cup S\Gamma a \subseteq L$. Since $(a)_L \subseteq L$, $A^* \subseteq (a)_L$ and $S \setminus A^* \subset L$. We have $S = (S \setminus A^*) \cup A^* \subseteq L \cup (a)_L \subseteq L \subseteq S$. Thus, S = L. Therefore, $S \setminus A^*$ is a maximal proper left Γ -hyperideal of S.

Theorem 3.8. Let S be an LA- Γ -semihypergroup with pure left identity and let A^* be the union of all right bases of S such that $\emptyset \neq A^* \subset S$. If S contains a maximal left Γ -hyperideal of S containing every proper left Γ -hyperideal of S, denoted by L^* , then $S \setminus A^* = L^*$ if and only if |A| = 1 for every right base A of S.

Proof: Assume that $S \setminus A^* = L^*$. Then $S \setminus A^*$ is a maximal proper left Γ -hyperideal of S. By Theorem 3.7, $A^* \subseteq (a)_L$ for all $a \in A^*$. We will show that $S \setminus A^* \subseteq (a)_L$ for all $a \in A^*$. Suppose that $S \setminus A^* \not\subseteq (a')_L$ for some $a' \in A^*$. Then $(a')_L \subset S$, and $(a')_L$ is a proper left Γ -hyperideal of S. So $a' \in (a')_L \subseteq L^* = S \setminus A^*$ and we obtain $a' \in S \setminus A^*$, i.e., $a' \notin A^*$. This is a contradiction. Hence, $S \setminus A^* \subseteq (a)_L$ for all $a \in A^*$. By $S = (S \setminus A^*) \cup A^* \subseteq (a)_L \subseteq S$ for all $a \in A^*$. So $S = (a)_L$ for all $a \in A^*$. Therefore, $\{a\}$ is a right base of S for all $a \in A^*$. Let A be a right base of S and let $a, b \in A$. Suppose that $a \neq b$. Since $A \subseteq A^*$, $a \in A^*$ and so $S = (a)_L$. Since $a \neq b$ and $b \in S = a \cup S\Gamma a$, we obtain $b \in S\Gamma a$. By Lemma 3.1, b = a. This is a contradiction. Thus, a = b and |A| = 1.

Conversely, assume that every right base of S has only one element. Then $S = (a)_L$ for all $a \in A^*$. We will show that $S \setminus A^* = L^*$. Since $\emptyset \neq A^* \subset S$, $\emptyset \neq S \setminus A^* \subset S$. By Theorem 3.6, $S \setminus A^*$ is a proper left Γ -hyperideal of S. Let L be a left Γ -hyperideal of S such that $S \setminus A^* \subseteq L \subseteq S$. Suppose that $S \setminus A^* \neq L$, so $S \setminus A^* \subset L$. Then there exist $x \in L$ and $x \notin S \setminus A^*$, i.e., $x \in A^*$. So $L \cap A^* \neq \emptyset$. Let $a \in L \cap A^*$. Since $a \in L$, we have $S\Gamma a \subseteq S\Gamma L \subseteq L$. So $S = a \cup S\Gamma a \subseteq L \subseteq S$. Thus, L = S. Hence, $S \setminus A^*$ is a maximal proper left Γ -hyperideal of S. Next, let B be a proper left Γ -hyperideal of S. If $B \not\subseteq S \setminus A^*$, then there exist $a \in B$ and $a \notin S \setminus A^*$, i.e., $a \in A^*$. Since $a \in B$, we have $S\Gamma a \subseteq S\Gamma B \subseteq B$. So $S = a \cup S\Gamma a \subseteq B \subset S$. Thus, S = B. This is a contradiction. Hence, $B \subseteq S \setminus A^*$. Therefore, $S \setminus A^* = L^*$ and the proof is completed. \Box

We end this paper with an example by illustrating the results of Theorem 3.8.

By Example 2.2, we have the union of all right base of S as $A^* = \{x_1\}$. Then $S \setminus A^* = \{x_2, x_3, x_4\}$ is a maximal left Γ -hyperideal of S containing every proper left Γ -hyperideal of S. So, we obtain $S \setminus A^* = L^*$ and $|\{x_1\}| = 1$.

4. Conclusion. In this paper, we focus only on the results for right base of an LA- Γ -semihypergroup with pure left identity. For left base, we can show dually. In Theorem 3.1, we give the necessary and sufficient condition for element in an LA- Γ -semihypergroup with pure left identity, to be a right base. In Theorem 3.4, we show that all right bases of an LA- Γ -semihypergroup with pure left identity have the same cardinality. Moreover, we show the remarkable results of an LA- Γ -semihypergroup with pure left identity in Theorems 3.2, 3.3, 3.5, 3.6, 3.7 and 3.8. In the future work, we can study other results in this algebraic hyperstructures. For example in [10], the authors studied the fuzzy almost interior ideals in semigroups, and we can extend this result to the fuzzy almost interior hyperideals in LA- Γ -semihypergroups.

REFERENCES

- F. Marty, On a generalization of the notion of groups, Proc. of the 8th Congress of Scandinavian Mathematicians, Stockholm, Sweden, pp.45-49, 1934.
- [2] M. K. Sen, On Γ-semigroups, Proc. of the International Conference on Algebra and Its Application, Decker Publication, New York, pp.301-308, 1981.
- [3] T. Tamura, One sided-bases and translation of a semigroup, Math. Japan., vol.3, pp.137-141, 1955.
- [4] I. Fabrici, One-sided bases of semigroups, *Matematicky Casopis*, vol.22, pp.286-290, 1972.
- [5] T. Changphas and P. Kummoon, On left and right bases of a Γ-semigroup, International Journal of Pure and Applied Mathematicians, vol.118, pp.125-135, 2018.
- [6] M. Aslam, T. Aroob and N. Yaqoob, On cubic Γ-hyperideals in left almost Γ-semihypergroups, Annals of Fuzzy Mathematics and Informatics, vol.5, no.1, pp.169-182, 2013.
- [7] N. Yaqoob, Applications of rough sets to Γ-hyperideals in left almost Γ-semihypergroups, Neural Computing and Applications, vol.21, no.1, pp.267-273, 2012.
- [8] N. Yaqoob and M. Aslam, On bi-Γ-hyperideals in left almost Γ-semihypergroups, Journal of Advanced Research in Pure Mathematics, vol.4, no.1, pp.130-143, 2012.
- [9] N. Yaqoob, M. Aslam and Faisal, On soft Γ-hyperideals over left almost Γ-semihypergroups, Journal of Advanced Research in Dynamical and Control Systems, vol.4, no.1, pp.1-12, 2012.
- [10] W. Krailoet, A. Simuen, R. Chinram and P. Petchkaew, A note on fuzzy almost interior ideals in semigroups, *International Journal of Mathematics and Computer Science*, vol.16, no.2, pp.803-808, 2021.