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Abstract. In this paper, we introduce the concepts of left and right bases of LA-Γ-
semihypergroups with pure left identity and study the structure of LA-Γ-semihypergroups
with pure left identity containing left and right bases. We focus only on the results for
right base of an LA-Γ-semihypergroup with pure left identity. For left base, we can show
dually. We also give the necessary and sufficient condition for element in an LA-Γ-
semihypergroup with pure left identity, to be a right base. Moreover, we show that all
right bases of an LA-Γ-semihypergroup with pure left identity have the same cardinali-
ty. Finally, we show that the compliment of the union of all right bases of an LA-Γ-
semihypergroup with pure left identity is maximal proper left Γ-hyperideal.
Keywords: LA-Γ-semihypergroup, Left Γ-hyperideal, Right base, Quasi-order, Maxi-
mal proper left Γ-hyperideal

1. Introduction. The algebraic hyperstructure notion was introduced in 1934 by Marty
[1]. The attraction of hyperstructure is its special property that the image of each pair
of a cross product of two sets is led to a set where in classical structures it is an element
again, as follows.

Let S be a non-empty set and P ∗(S) = P (S) \ {∅} denotes the set of all non-empty
subsets of S. The map ◦: S × S → P ∗(S) is called a hyperoperation or join operation
on the set S. A couple (S, ◦) is called a hypergroupoid. Let A and B be two non-empty
subsets of S, and then we denote

A ◦B =
∪

a∈A,b∈B

a ◦ b, a ◦ A = {a} ◦ A and a ◦B = {a} ◦B.

In [2], Sen introduced the notion of a Γ-semigroup as a generalization of semigroups
and ternary semigroups, as follows.
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Let S and Γ be any two non-empty sets. Then S is called a Γ -semigroup if there is a
mapping from S × Γ× S into S, written as (a, α, b) 7→ aαb, such that (aγb)βc = aγ(bβc)
for all a, b, c ∈ S and all γ, β ∈ Γ.
In 1955, the notion of a right (left) base of a semigroups was first introduced by Tamura

[3]. Later, Fabrici [4] studied the structure of semigroups containing the right bases by us-
ing Tamura’s results. Recently, the notions of left and right bases of Γ-semigroups were in-
troduced by Changphas and Kummoon [5]. In this paper, we introduce the concepts of left
and right bases of LA-Γ-semihypergroups with pure left identity. In particular, we study
the structure of LA-Γ-semihypergroups with pure left identity containing the right bases
and extend the results in Γ-semigroups to LA-Γ-semihypergroups. This structure was de-
fined by Yaqoob and Aslam [8] which is a generalization of many algebraic structures, for
example, commutative Γ-semigroups, LA-semigroups, comutative semihypergroups and
LA-semihypergroups. They received some nice results in LA-Γ-semihypergroups.

2. Preliminaries. In this section, we provide definitions and results that are used throu-
ghout this paper. Those can be found in [6, 7, 8, 9].

Definition 2.1. Let S and Γ be any two non-empty sets. Then S is called a left almost
Γ-semihypergroup (LA-Γ-semihypergroup) if every γ ∈ Γ is a hyperoperation on S, i.e.,
xγy ⊆ S, for every x, y ∈ S. And for every α, β ∈ Γ and x, y, z ∈ S we have

(xαy)βz = (zαy)βx.

The law (xαy)βz = (zαy)βx is called left invertive law. For A and B be two non-empty
subsets of an LA-Γ-semihypergroup S, we define

AγB =
∪

{aγb | a ∈ A, b ∈ B and γ ∈ Γ}

also
AΓB =

∪
γ∈Γ

AγB =
∪

{aγb | a ∈ A, b ∈ B and γ ∈ Γ}.

Throughout the paper, S stands for an LA-Γ-semihypergroup unless otherwise specified.
Suggest that the notion of LA-Γ-semihypergroups is a generalization of commutative

semigroups, commutative semihypergroups and of commutative Γ-semigroups.

Example 2.1. [8] Let S = {1, 2, 3} and Γ = {α, β} be the sets of binary hyperoperations
defined below:

α 1 2 3

1 {1, 3} {1, 2} {1, 3}
2 {1, 2, 3} {1, 2, 3} {1, 2, 3}
3 {1, 2, 3} {1, 2, 3} {1, 2, 3}

β 1 2 3

1 {1, 3} {1, 2, 3} {1, 3}
2 {1, 2, 3} {1, 2} {2, 3}
3 {1, 2, 3} {2, 3} {1, 2}

Clearly S is not a Γ-semihypergroup because {1, 2, 3} = (1α1)β3 ̸= 1α(1β3) = {1, 3}.
Thus, S is an LA-Γ-semihypergroup because it satisfies the left invertive law.

Every LA-Γ-semihypergroup satisfies the law (aαb)β(cγd) = (aαc)β(bγd) for all a, b,
c, d ∈ S and α, β, γ ∈ Γ. This law is known as Γ-hypermedial law [8].

Definition 2.2. Let S be an LA-Γ-semihypergroup. An element e ∈ S is called a left
identity (resp. pure left identity) if a ∈ eγa (resp. a = eγa) for all a ∈ S and γ ∈ Γ.

By Example 2.1, elements 1 and 2 in S are left identities of S but not pure left identity
of S.
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Example 2.2. Let S = {x1, x2, x3, x4} and Γ = {β} be the sets of binary hyperoperations
defined below:

β x1 x2 x3 x4

x1 {x1} {x2} {x3} {x4}
x2 {x3} {x2, x3} {x2, x3} {x4}
x3 {x2} {x2, x3} {x2, x3} {x4}
x4 {x4} {x4} {x4} {x4}

Clearly S is not a Γ-semihypergroup because {x2} = (x2βx1) βx1 ̸= x2β (x1βx1) = {x3}.
Thus, S is an LA-Γ-semihypergroup because it satisfies the left invertive law. Here x1 is
a left identity of S; moreover x1 is a pure left identity of S.

Lemma 2.1. Let S be an LA-Γ-semihypergroup with pure left identity e, then (aαb)β(cγd)
= (dαc)β(bγa) holds for all a, b, c, d ∈ S and α, β, γ ∈ Γ.

Proof: Let S be an LA-Γ-semihypergroup with pure left identity e. Then for all
a, b, c, d ∈ S and α, β, γ ∈ Γ, we have

(aαb)β(cγd) = ((eγa)αb)β((eαc)γd)

= ((bγa)αe)β((dαc)γe) (by left invertive law)

= ((bγa)α(dαc))β(eγe) (by Γ-hypermedial law)

= ((eγe)α(dαc))β(bγa) (by left invertive law)

= (eα(dαc))β(bγa)

= (dαc)β(bγa)

This completes the proof. 2

The law (aαb)β(cγd) = (dαc)β(bγa) is called a Γ-hyperparamedial law.

Lemma 2.2. If S is an LA-Γ-semihypergroup with pure left identity e, then SΓS = S.

Proof: Clearly, SΓS ⊆ S. Next, to show that S ⊆ SΓS. Let x ∈ S, and then for any
γ ∈ Γ, we have x = eγx ⊆ SΓS. Thus, S ⊆ SΓS. Hence, SΓS = S. 2

Definition 2.3. Let S be an LA-Γ-semihypergroup.
(1) A non-empty subset A of S is called a sub LA-Γ-semihypergroup of S if xγy ⊆ A

for all x, y ∈ A and γ ∈ Γ.
(2) A non-empty subset A of S is called a left (resp. right) Γ-hyperideal of S if SΓA ⊆ A

(resp. AΓS ⊆ A).
(3) A left Γ-hyperideal A of S is called proper if A ̸= S.
(4) A proper left Γ-hyperideal A of S is called maximal if for any left Γ-hyperideal B

of S such that A ⊆ B implies A = B or B = S.

Lemma 2.3. Let S be an LA-Γ-semihypergroup and Ai be a left Γ-hyperideal of S for
each i ∈ I, and then the following statements hold.

(1) If
∩

i∈I Ai ̸= ∅, then
∩

i∈I Ai is a left Γ-hyperideal of S.
(2)

∪
i∈I Ai is a left Γ-hyperideal of S.

Proof: (1) Assume that
∩

i∈I Ai ̸= ∅. To show that SΓ
(∩

i∈I Ai

)
⊆

∩
i∈I Ai, let

x ∈ SΓ
(∩

i∈I Ai

)
. Then x ∈ sγa1 for some s ∈ S, γ ∈ Γ and a1 ∈

∩
i∈I Ai. Since

a1 ∈
∩

i∈I Ai, we obtain a1 ∈ Ai for all i ∈ I. Since Ai is a left Γ-hyperideal of S
for all i ∈ I, we have x ∈ sγa1 ⊆ SΓAi ⊆ Ai, for all i ∈ I. So x ∈

∩
i∈I Ai. Hence,

SΓ
(∩

i∈I Ai

)
⊆

∩
i∈I Ai. Therefore,

∩
i∈I Ai is a left Γ-hyperideal of S.

(2) To show that
∪

i∈I Ai is a left Γ-hyperideal of S, let x ∈ SΓ
(∪

i∈I Ai

)
. Then x ∈ sγa1

for some s ∈ S, γ ∈ Γ and a1 ∈
∪

i∈I Ai. Since a1 ∈
∪

i∈I Ai, we obtain a1 ∈ Ai for some
i ∈ I. Since Ai is a left Γ-hyperideal of S for all i ∈ I, x ∈ sγa1 ⊆ SΓAi ⊆ Ai ⊆

∪
i∈I Ai.

Thus, x ∈
∪

i∈I Ai. Hence, SΓ
(∪

i∈I Ai

)
⊆

∪
i∈I Ai. Therefore,

∪
i∈I Ai is a left Γ-

hyperideal of S. 2
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Definition 2.4. Let A be a non-empty subset of an LA-Γ-semihypergroup S. The inter-
section of all left Γ-hyperideals of S containing A, is the smallest left Γ-hyperideal of S
generated by A and is denoted by (A)L.

Lemma 2.4. Let A be a non-empty subset of LA-Γ-semihypergroup S with pure left
identity e. Then

(A)L = A ∪ SΓA.

Proof: Let B = A ∪ SΓA. First, consider

SΓB = SΓ(A ∪ SΓA)

= SΓA ∪ SΓ(SΓA)

= SΓA ∪ (SΓS)Γ(SΓA) (by Lemma 2.2)

= SΓA ∪ (AΓS)Γ(SΓS) (by Γ-hyperparamedial law)

= SΓA ∪ (AΓS)ΓS

= SΓA ∪ (SΓS)ΓA (by left invertive law)

= SΓA ∪ SΓA = SΓA ⊆ B.

Thus, B is a left Γ-hyperideal of S containing A. Next, let C be a left Γ-hyperideal of S
containing A. We obtain A ⊆ C, and so SΓA ⊆ SΓC ⊆ C. Thus, B = A ∪ SΓA ⊆ C.
Hence, B is the smallest left Γ-hyperideal of S containing A. Therefore, (A)L = A∪SΓA.
2

3. Main Results. We begin this section with the definition of a right base of an LA-Γ-
semihypergroup with pure left identity as follows.

Definition 3.1. Let S be an LA-Γ-semihypergroup with pure left identity. A non-empty
subset A of S is called a right base of S if it satisfies the following two conditions.
(1) S = A ∪ SΓA, i.e., S = (A)L.
(2) If B is a subset of A such that S = (B)L, then B = A.

For a left base of S it is defined dually.

By Example 2.2, S is an LA-Γ-semihypergroup with pure left identity. Then we have
{x1} as the only one right base of S.

Example 3.1. Let S = {a, b, c, d} and Γ = {γ} be the sets of binary hyperoperations
defined below:

γ a b c d
a {a} {b} {c} {d}
b {c} {a, b, c} {a, b, c} {d}
c {b} {a, b, c} {a, b, c} {d}
d {d} {d} {d} S

Clearly S is not a Γ-semihypergroup because {b} = (bγa)γa ̸= bγ(aγa) = {c}. Thus, S
is an LA-Γ-semihypergroup because it satisfies the left invertive law and S is an LA-Γ-
semihypergroup with pure left identity. Then, the right bases of S are A = {a}, B = {b},
C = {c} and D = {d}. And the left bases of S are the same as the right bases of S.

Lemma 3.1. Let A be a right base of an LA-Γ-semihypergroup S with pure left identity
and a, b ∈ A. If a ∈ SΓb, then a = b.

Proof: Assume that a ∈ SΓb and suppose that a ̸= b. Let B = A \ {a}, then B ⊂ A.
Since a ̸= b, b ∈ B. To show that (A)L ⊆ (B)L, let x ∈ (A)L = A ∪ SΓA. Then x ∈ A
or x ∈ SΓA. Let x ∈ A. If x ̸= a, then x ∈ B ⊆ B ∪ SΓB. So x ∈ (B)L. If x = a by
assumption we have x = a ∈ SΓb ⊆ SΓB ⊆ B ∪ SΓB. So x ∈ (B)L. Hence, A ⊆ (B)L.
Let x ∈ SΓA. Then x ∈ sγc for some s ∈ S, γ ∈ Γ and c ∈ A. If c ̸= a, then c ∈ B. So
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x ∈ sγc ⊆ SΓB ⊆ B ∪ SΓB = (B)L. Thus, x ∈ (B)L. If c = a, then c = a ∈ SΓb ⊆ SΓB
So x ∈ sγc ⊆ SΓ(SΓB)

= (SΓS)Γ(SΓB) (by Lemma 2.2)

= (BΓS)Γ(SΓS) (by Γ-hyperparamedial law)

= (BΓS)ΓS

= (SΓS)ΓB (by left invertive law)

= SΓB ⊆ (B)L.
Thus, SΓA ⊆ (B)L. Since A ⊆ (B)L and SΓA ⊆ (B)L, (A)L = A ∪ SΓA ⊆ (B)L. By
S = (A)L ⊆ (B)L ⊆ S, so we obtain (B)L = S. This contradicts to condition (2) of
Definition 2.1. Therefore, a = b. 2

Let S be an LA-Γ-semihypergroup with pure left identity. Define a quasi-order on S
by, for any a, b ∈ S,

a ≤L b ⇔ (a)L ⊆ (b)L.

We write a <L b if a ≤L b but a ̸= b, i.e., (a)L ⊂ (b)L.
In general, ≤L is not a partial order. By Example 3.1, we have (a)L ⊆ (b)L, i.e., a ≤L b

and (b)L ⊆ (a)L, i.e., b ≤L a but a ̸= b. This shows that ≤L is not a partial order.
The following theorem characterizes when a non-empty subset of an LA-Γ-semihyper-

group with pure left identity, is a right base of an LA-Γ-semihypergroup with pure left
identity.

Theorem 3.1. A non-empty subset A of an LA-Γ-semihypergroup S with pure left iden-
tity, is a right base if and only if A satisfies the following two conditions:

(1) for any x ∈ S, there exists a ∈ A such that x ≤L a;
(2) for any a, b ∈ A, if a ̸= b, then neither a ≤L b nor b ≤L a.

Proof: Assume that A is a right base of S. Then S = (A)L. First, let x ∈ S, and then
x ∈ S = (A)L = A ∪ SΓA. We have x ∈ A or x ∈ SΓA. If x ∈ A, then x ≤L x. If
x ∈ SΓA, then x ∈ sγa for some s ∈ S, γ ∈ Γ and a ∈ A. Since x ∈ sγa ⊆ SΓa ⊆ (a)L,
x ∈ (a)L. Since x ∈ SΓa, SΓx ⊆ SΓ(SΓa)

= (SΓS)Γ(SΓa) (by Lemma 2.2)

= (aΓS)Γ(SΓS) (by Γ-hyperparamedial law)

= (aΓS)ΓS

= (SΓS)Γa (by left invertive law)

= SΓa ⊆ (a)L.
We obtain SΓx ⊆ (a)L. Since x ⊆ (a)L and SΓx ⊆ (a)L, (x)L = x ∪ SΓx ⊆ (a)L. So
x ≤L a. Hence, the condition (1) holds. Next, let a, b ∈ A be such that a ̸= b. Suppose
that a ≤L b, and then (a)L ⊆ (b)L. Since a ∈ (a)L ⊆ (b)L and a ̸= b, a ∈ SΓb, by Lemma
3.1, a = b. This is a contradiction. The case b ≤L a can be proved similarly. Thus, a ≤L b
and b ≤L a are false. Hence, the condition (2) holds.

Conversely, assume that (1) and (2) hold. We will show that A is a right base of S.
First, to show that S = (A)L, let x ∈ S, by (1) there exists a ∈ A such that (x)L ⊆ (a)L,
then x ∈ (x)L ⊆ (a)L ⊆ (A)L. So S ⊆ (A)L, and S = (A)L. Next, to show that A is
a minimal subset of S with the property S = (A)L. Let B ⊂ A such that S = (B)L.
Since B ⊂ A, there exists a ∈ A and a /∈ B. Since a ∈ A ⊆ S = (B)L and a /∈ B, we
obtain a ∈ SΓB. Then a ∈ sγb for some s ∈ S, γ ∈ Γ and b ∈ B. By a ∈ sγb ⊆ SΓb ⊆
(b)L, so a ∈ (b)L. Since a ∈ SΓb, SΓa ⊆ SΓ(SΓb)

= (SΓS)Γ(SΓb) (by Lemma 2.2)

= (SΓb)Γ(SΓS) (by Γ-hyperparamedial law)

= (SΓb)ΓS
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= (SΓS)Γb (by left invertive law)

= SΓb ⊆ (b)L.
By a ⊆ (b)L and SΓa ⊆ (b)L, so (a)L = a ∪ SΓa ⊆ (b)L. Thus, a ≤L b where a, b ∈ A.
This contradicts to the condition (2). Therefore, A is a right base of S. 2

If a right base A of an LA-Γ-semihypergroup S with pure left identity, is a left Γ-
hyperideal of S, then

S = A ∪ SΓA ⊆ A ∪ A = A.

Hence, S = A. The converse statement is obvious. Then we conclude as the following.

Theorem 3.2. A right base A of an LA-Γ-semihypergroup S with pure left identity, is a
left Γ-hyperideal of S if and only if A = S.

Definition 3.2. An LA-Γ-semihypergroup S is said to be a right singular if y ∈ xγy for
all x, y ∈ S and γ ∈ Γ.

Theorem 3.3. Let A be a right base of an LA-Γ-semihypergroup S with pure left identity.
If A is a sub LA-Γ-semihypergroup of S, then A is right singular.

Proof: Assume that A is a sub LA-Γ-semihypergroup of S. Let a, b ∈ A and let γ ∈ Γ.
By assumption, aγb ⊆ A. Set c ∈ aγb for some c ∈ A. Since c ∈ aγb ⊆ SΓb, by Lemma
3.1, we have c = b. Thus, b ∈ aγb. Therefore, A is right singular. 2

The converse statement is not valid in general. By Example 3.1, we have B = {b} as a
right base of S such that B is right singular. Then B is not sub LA-Γ-semihypergroup of
S because BΓB = {a, b, c} ̸⊆ B.
Let S be an LA-Γ-semihypergroup, and let α ∈ Γ. An element e of S is called an

α-idempotent of S if e ∈ eαe. Let Eα(S) denote the set of all α-idempotent of S, and let
E(S) =

∪
α∈Γ Eα(S).

By Theorem 3.3, we obtain the following corollary.

Corollary 3.1. Let A be a right base of an LA-Γ-semihypergroup S with pure left identity.
If A is a sub LA-Γ-semihypergroup of S, then E(S) ̸= ∅.

Proof: Assume that A is a sub LA-Γ-semihypergroup of S. Let e ∈ A and let α ∈ Γ.
Then eαe ⊆ A. By Theorem 3.3, we obtain e ∈ eαe. Thus, e is an α-idempotent of S.
Therefore, E(S) ̸= ∅. 2

Theorem 3.4. The right bases of an LA-Γ-semihypergroup S with pure left identity have
the same cardinality.

Proof: Let A and B be right bases of S. Let a ∈ A. Since B is a right base of S, by
Theorem 3.1(1), there exists b ∈ B such that a ≤L b. Similarly, since A is a right base of
S, there exists a′ ∈ A such that b ≤L a′. Then a ≤L b ≤L a′, and a ≤L a′. By Theorem
3.1(2), a = a′. Hence, (a)L = (b)L. Now, define a mapping

φ : A → B; φ(a) = b

for all a ∈ A. First, to show that φ is well-defined, let a1, a2 ∈ A be such that a1 = a2,
φ (a1) = b1 and φ (a2) = b2 for some b1, b2 ∈ B. Then (a1)L = (b1)L and (a2)L = (b2)L.
Since a1 = a2, (a1)L = (a2)L, so (a1)L = (a2)L = (b1)L = (b2)L. Thus, b1 ≤L b2 and
b2 ≤L b1. By Theorem 3.1(2), b1 = b2. Hence, φ (a1) = φ (a2). Therefore, φ is well-
defined.
Next, to show that φ is one-to-one, let a1, a2 ∈ A be such that φ (a1) = φ (a2). Then

φ (a1) = φ (a2) = b for some b ∈ B. So, we obtain (a1)L = (a2)L = (b)L. Since (a1)L =
(a2)L, a1 ≤L a2 and a2 ≤L a1. By Theorem 3.1(2), a1 = a2. Therefore, φ is well-defined.
Finally, to show that φ is onto, let b ∈ B. Since A is a right base of S, by Theorem

3.1(1), there exists a ∈ A such that b ≤L a. Since B is a right base of S, by Theorem
3.1(1) there exists b′ ∈ B such that a ≤L b′. So, we obtain b ≤L a ≤L b′ and b ≤L b′. By
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Theorem 3.1(2), b = b′. Thus, (a)L = (b)L. Hence, φ(a) = b. Therefore, φ is onto. This
completes the proof. 2

Theorem 3.5. Let A be a right base of an LA-Γ-semihypergroup S with pure left identity
and let a ∈ A. If (a)L = (b)L for some b ∈ S such that a ̸= b, then b is an element of a
right base of S which is different from A.

Proof: Assume that (a)L = (b)L for some b ∈ S such that a ̸= b. LetB = (A\{a})∪{b},
and then B ̸= A. We will show that B is a right base of S. To show that B satisfies (1)
in Theorem 3.1, let x ∈ S. Since A is a right base of S, by Theorem 3.1(1) there exists
c ∈ A such that x ≤L c. If c ̸= a, then c ∈ B. Thus, x ≤L c where c ∈ B. If c = a, then
(c)L = (a)L. Since (a)L = (b)L, (c)L = (b)L. Thus, (x)L ⊆ (c)L = (b)L. Hence, x ≤L b
where b ∈ B. Next, to show that B satisfies (2) in Theorem 3.1, let b1, b2 ∈ B be such
that b1 ̸= b2. Then there are four cases to consider.

Case 1: b1 ̸= b and b2 ̸= b. Then b1, b2 ∈ A. Since A is a right base of S, neither
b1 ≤L b2 nor b2 ≤L b1.

Case 2: b1 ̸= b and b2 = b. Then b1 ∈ A\{a} and (b2)L = (b)L. If b1 ≤L b2, then
(b1)L ⊆ (b2)L = (b)L = (a)L. So b1 ≤L a where b1, a ∈ A. This is a contradiction. If
b2 ≤L b1, then (a)L = (b)L = (b2)L ⊆ (b1)L. So a ≤L b1 where b1, a ∈ A. This is a
contradiction.

Case 3: b1 = b and b2 ̸= b. Then (b1)L = (b)L and b2 ∈ A\{a}. If b1 ≤L b2, then
(a)L = (b)L = (b1)L ⊆ (b2)L. So a ≤L b2 where b2, a ∈ A. This is a contradiction. If
b2 ≤L b1, then (b2)L ⊆ (b1)L = (b)L = (a)L. So b2 ≤L a where b2, a ∈ A. This is a
contradiction.

Case 4: b1 = b and b2 = b. This is impossible.
Therefore, B is a right base of S which B ̸= A. 2

Theorem 3.6. Let A∗ be the union of all right bases of an LA-Γ-semihypergroup S with
pure left identity. If S\A∗ ̸= ∅, then S\A∗ is a left Γ-hyperideal of S.

Proof: Assume that S\A∗ ̸= ∅. We will show that S\A∗ is a left Γ-hyperideal of S.
Let x ∈ S, γ ∈ Γ and a ∈ S\A∗. To show that xγa ⊆ S\A∗, suppose that xγa ̸⊆ S\A∗.
Then there exist b ∈ xγa and b /∈ S\A∗, i.e., b ∈ A∗. So b ∈ A for some a right base A of
S. Since b ∈ xγa ⊆ SΓa ⊆ (a)L, SΓb ⊆ SΓ(SΓa)

= (SΓS)Γ(SΓa) (by Lemma 2.2)

= (aΓS)Γ(SΓS) (by Γ-hyperparamedial law)

= (aΓS)ΓS

= (SΓS)Γa (by left invertive law)

= SΓa ⊆ (a)L.
So (b)L = b ∪ SΓb ⊆ (a)L. Thus, (b)L ⊆ (a)L. If (b)L = (a)L, by Theorem 3.5, we obtain
a ∈ A∗. This is a contradiction. Hence, (b)L ⊂ (a)L, i.e., b <L a. Since A is a right base
of S by Theorem 3.1(1), there exists b1 ∈ A such that a ≤L b1. Then b <L a ≤L b1 and
so b ≤L b1 where b, b1 ∈ A. This contradicts to the condition (2) of Theorem 3.1. Hence,
xγa ⊆ S\A∗. Therefore, S\A∗ is a left Γ-hyperideal of S. 2

In Example 2.2, we have the union of all right base of S as A∗ = {x1}. Then S \A∗ =
{x2, x3, x4} is a maximal proper left Γ-hyperideal of S. However, it turns out that this
is true in general, when A∗ ̸= S and A∗ ⊆ (a)L for all a ∈ A∗. Then we will prove in
Theorem 3.7.

Theorem 3.7. Let S be an LA-Γ-semihypergroup with pure left identity and let A∗ be
the union of all right bases of S such that A∗ ̸= ∅. Then S\A∗ is a maximal proper left
Γ-hyperideal of S if and only if A∗ ̸= S and A∗ ⊆ (a)L for all a ∈ A∗.
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Proof: Let S\A∗ be a maximal proper left Γ-hyperideal of S. Then A∗ ̸= S. Let
a ∈ A∗. Suppose that A∗ ̸⊆ (a)L. Then there exist x /∈ (a)L and x ∈ A∗, i.e., x /∈ S\A∗.
We have (S\A∗) ∪ (a)L ⊂ S. So (S\A∗) ∪ (a)L is a proper left Γ-hyperideal of S. This
contradicts to the maximality of S\A∗. Therefore, A∗ ⊆ (a)L.
Conversely, let A∗ ̸= S and A∗ ⊆ (a)L for all a ∈ A∗. Then, we obtain ∅ ̸= A∗ ⊂ S,

∅ ̸= S\A∗ ⊂ S. By Theorem 3.6, S\A∗ is a proper left Γ-hyperideal of S. Let L be a left
Γ-hyperideal of S such that S\A∗ ⊆ L ⊆ S. Suppose that S\A∗ ̸= L, and so S\A∗ ⊂ L.
Then there exist x ∈ L and x /∈ S\A∗, i.e., x ∈ A∗. So L ∩ A∗ ̸= ∅. Let a ∈ L ∩ A∗.
Then a ∈ L and SΓa ⊆ SΓL ⊆ L. So (a)L = a ∪ SΓa ⊆ L. Since (a)L ⊆ L, A∗ ⊆ (a)L
and S\A∗ ⊂ L. We have S = (S\A∗)∪A∗ ⊆ L∪ (a)L ⊆ L ⊆ S. Thus, S = L. Therefore,
S\A∗ is a maximal proper left Γ-hyperideal of S. 2

Theorem 3.8. Let S be an LA-Γ-semihypergroup with pure left identity and let A∗ be
the union of all right bases of S such that ∅ ̸= A∗ ⊂ S. If S contains a maximal left
Γ-hyperideal of S containing every proper left Γ-hyperideal of S, denoted by L∗, then
S\A∗ = L∗ if and only if |A| = 1 for every right base A of S.

Proof: Assume that S\A∗ = L∗. Then S\A∗ is a maximal proper left Γ-hyperideal
of S. By Theorem 3.7, A∗ ⊆ (a)L for all a ∈ A∗. We will show that S\A∗ ⊆ (a)L
for all a ∈ A∗. Suppose that S\A∗ ̸⊆ (a′)L for some a′ ∈ A∗. Then (a′)L ⊂ S, and
(a′)L is a proper left Γ-hyperideal of S. So a′ ∈ (a′)L ⊆ L∗ = S\A∗ and we obtain
a′ ∈ S\A∗, i.e., a′ /∈ A∗. This is a contradiction. Hence, S\A∗ ⊆ (a)L for all a ∈ A∗. By
S = (S\A∗) ∪ A∗ ⊆ (a)L ⊆ S for all a ∈ A∗. So S = (a)L for all a ∈ A∗. Therefore, {a}
is a right base of S for all a ∈ A∗. Let A be a right base of S and let a, b ∈ A. Suppose
that a ̸= b. Since A ⊆ A∗, a ∈ A∗ and so S = (a)L. Since a ̸= b and b ∈ S = a ∪ SΓa, we
obtain b ∈ SΓa. By Lemma 3.1, b = a. This is a contradiction. Thus, a = b and |A| = 1.
Conversely, assume that every right base of S has only one element. Then S = (a)L

for all a ∈ A∗. We will show that S\A∗ = L∗. Since ∅ ̸= A∗ ⊂ S, ∅ ̸= S\A∗ ⊂ S. By
Theorem 3.6, S\A∗ is a proper left Γ-hyperideal of S. Let L be a left Γ-hyperideal of
S such that S\A∗ ⊆ L ⊆ S. Suppose that S\A∗ ̸= L, so S\A∗ ⊂ L. Then there exist
x ∈ L and x /∈ S\A∗, i.e., x ∈ A∗. So L ∩ A∗ ̸= ∅. Let a ∈ L ∩ A∗. Since a ∈ L, we
have SΓa ⊆ SΓL ⊆ L. So S = a ∪ SΓa ⊆ L ⊆ S. Thus, L = S. Hence, S\A∗ is a
maximal proper left Γ-hyperideal of S. Next, let B be a proper left Γ-hyperideal of S.
If B ̸⊆ S\A∗, then there exist a ∈ B and a /∈ S\A∗, i.e., a ∈ A∗. Since a ∈ B, we have
SΓa ⊆ SΓB ⊆ B. So S = a ∪ SΓa ⊆ B ⊂ S. Thus, S = B. This is a contradiction.
Hence, B ⊆ S\A∗. Therefore, S\A∗ = L∗ and the proof is completed. 2

We end this paper with an example by illustrating the results of Theorem 3.8.
By Example 2.2, we have the union of all right base of S as A∗ = {x1}. Then S\A∗ =

{x2, x3, x4} is a maximal left Γ-hyperideal of S containing every proper left Γ-hyperideal
of S. So, we obtain S\A∗ = L∗ and |{x1}| = 1.

4. Conclusion. In this paper, we focus only on the results for right base of an LA-Γ-
semihypergroup with pure left identity. For left base, we can show dually. In Theorem
3.1, we give the necessary and sufficient condition for element in an LA-Γ-semihypergroup
with pure left identity, to be a right base. In Theorem 3.4, we show that all right bases
of an LA-Γ-semihypergroup with pure left identity have the same cardinality. Moreover,
we show the remarkable results of an LA-Γ-semihypergroup with pure left identity in
Theorems 3.2, 3.3, 3.5, 3.6, 3.7 and 3.8. In the future work, we can study other results in
this algebraic hyperstructures. For example in [10], the authors studied the fuzzy almost
interior ideals in semigroups, and we can extend this result to the fuzzy almost interior
hyperideals in LA-Γ-semihypergroups.



ICIC EXPRESS LETTERS, VOL.16, NO.7, 2022 721

REFERENCES

[1] F. Marty, On a generalization of the notion of groups, Proc. of the 8th Congress of Scandinavian
Mathematicians, Stockholm, Sweden, pp.45-49, 1934.

[2] M. K. Sen, On Γ-semigroups, Proc. of the International Conference on Algebra and Its Application,
Decker Publication, New York, pp.301-308, 1981.

[3] T. Tamura, One sided-bases and translation of a semigroup, Math. Japan., vol.3, pp.137-141, 1955.
[4] I. Fabrici, One-sided bases of semigroups, Matematicky Casopis, vol.22, pp.286-290, 1972.
[5] T. Changphas and P. Kummoon, On left and right bases of a Γ-semigroup, International Journal of

Pure and Applied Mathematicians, vol.118, pp.125-135, 2018.
[6] M. Aslam, T. Aroob and N. Yaqoob, On cubic Γ-hyperideals in left almost Γ-semihypergroups,

Annals of Fuzzy Mathematics and Informatics, vol.5, no.1, pp.169-182, 2013.
[7] N. Yaqoob, Applications of rough sets to Γ-hyperideals in left almost Γ-semihypergroups, Neural

Computing and Applications, vol.21, no.1, pp.267-273, 2012.
[8] N. Yaqoob and M. Aslam, On bi-Γ-hyperideals in left almost Γ-semihypergroups, Journal of Advanced

Research in Pure Mathematics, vol.4, no.1, pp.130-143, 2012.
[9] N. Yaqoob, M. Aslam and Faisal, On soft Γ-hyperideals over left almost Γ-semihypergroups, Journal

of Advanced Research in Dynamical and Control Systems, vol.4, no.1, pp.1-12, 2012.
[10] W. Krailoet, A. Simuen, R. Chinram and P. Petchkaew, A note on fuzzy almost interior ideals in

semigroups, International Journal of Mathematics and Computer Science, vol.16, no.2, pp.803-808,
2021.


