ลักษณะของแกมมากึ่งไฮเพอร์กรุปอันดับโดยใช้สมบัติของ (m,n)-ควอซีแกมมาไฮเพอร์ไอดีลอันดับ Characterizations of Ordered Γ -semihypergroups by the Properties of Their Ordered (m,n)-Quasi- Γ -hyperideals

วิชญาพร จันทะนัน, สุพรรษา เขตคาม และ จิราพร เนื้อนิล* Wichayaporn Jantanan, Supansa Khetkarm and Jiraporn Nuanin*

Department of Mathematics, Faculty of Science, Buriram Rajabhat University สาขาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยราชภัฏบุรีรัมย์
*E-mail: wichayaporn.jan@bru.ac.th

Received: 01 Oct 20 Revised: 02 Nov 20 Accepted: 10 Nov 20

บทคัดย่อ

ในบทความวิจัยนี้ เราได้ขยายแนวความคิดจากบทความวิจัยของ S.Thongrak และ A.Lampan (2018) ซึ่งเราได้แนะนำ แนวคิดและคุณสมบัติของ m-แกมมาไฮเพอร์ไอดีลอันดับซ้าย, n-แกมมาไฮเพอร์ไอดีลอันดับขวาและ (m,n)-ควอซีแกมมาไฮเพอร์ไอดีลอันดับ ตามลำดับ และสุดท้ายเราได้แนะนำแนวคิดของ (m,n)-คุณสมบัติแกมมาส่วนร่วมอันดับ ในแกมมากึ่งไฮเพอร์กรุปอันดับ และพิสูจน์ว่าทุก ๆ (m,n)-ควอซีแกมมาไฮเพอร์ไอดีลอันดับ ในแกมมากึ่งไฮเพอร์กรุปอันดับปรกติ จะมี (m,n)-คุณสมบัติแกมมาส่วน ร่วมอันดับ

คำสำคัญ: แกมมากึ่งไฮเพอร์กรุปอันดับ, (m,n)-ควอซีแกมมาไฮเพอร์ไอดีลอันดับ, (m,n) แกมมาสมบัติอินเตอร์เซกชัน, m-แกมมาไฮเพอร์ไอดีลอันดับชาวา

Abstract

This research was expanded from the research article of S.Thongrak and A.Lampan (2018). The concept and features of ordered m -left- Γ -hyperideals, ordered n -right- Γ -hyperideals were discussed and ordered (m,n)-quasi- Γ --hyperideals respectivety ,and the concept of ordered (m,n)- Γ -- intersection property in ordered - Γ semihypergroups and proved that every ordered (m,n)- quasi- Γ -hyperideals in regular ordered - semihypergroups had the ordered (m,n)- Γ --intersection property.

Keywords: Ordered Γ -semihypergroups, Ordered (m,n)-quasi- Γ -hyperideals, Ordered (m,n)- Γ -intersection property, Ordered m-left- Γ -hyperideals, Ordered n-right- Γ -hyperideals.

1. Introduction and Preliminaries

In 1986, M.K. Sen and N.K.Saha (Sen and Saha h 1986, pp. 180-186). define the notion of Γ -semi-group and that is the po- Γ -semigroup that was introduced by Y.I. Kwon and S.K. Lee (Kwon and lee, 1996, pp. 679-685). The notion of a quasi-ideals in semigroup was first invented by O. Steinfeld (Steinfeld, 1956, pp. 262-275). Thereafter, quasi-ideals have been studied in different algebraic structures in (Abbasi and Basar, 2013, pp. 1-7). N. Kehayopula, S. Lajos and G. Lepouras (Kehayopula, Lajos and Lepouras, 1997, pp. 75-81) defined and studied an ordered quasi-ideal in ordered semigroups. Recently, S. Thongrak and A. Lampan in (Thongrak and Lampan

, 2018, pp. 299-306) gave the characterizations of ordered semigroups andinvestigate the an ordered (m,n)-quasi-ideals in ordered semigroups.

Hyperstructures theory was introduced in 1934, F. Marty (Marty, 1934, pp. 45-49). defined hypergroups, began to analyze their properties and applied them to groups. Nowadays, hyperstructures have a lot of applications to several domains of mathematics and computer science and they are studied in many countries of the world. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set.

In continuation of the study, we characterize of ordered Γ -semihypergroups and investigate the an ordered (m,n)-quasi- Γ -hyperideals which extends the results in ordered Γ -semihypergroups.

In this section, we recall some necessary definitions, notations and properties of some algebraic structures.

Definition 1.1. (Marty, 1934) Let H be a non-empty set. Then the map $\circ: H \times H \to P^*(H)$ is called a hyperoperation, where $P^*(H)$ is the family of non-empty subsets of H. The couple (H, \circ) is called a hypergroupoid.

In the above definition, if A and B are two non-empty subsets of H and $x\in H$, then we define $A\circ B=\bigcup_{a\in A,b\in B}a\circ b,=x\circ A=\{x\}\circ A$ and $A\circ x=A\circ \{x\}.$

A hypergroupoid (H,\circ) is called a semihypergroup if for every $x,y,z\in H,$ we have

$$x \circ (y \circ z) = (x \circ y) \circ z$$
.

Definition 1.2. (Marty, 1934) An algebraic hyperstructure (H, \circ, \leq) is called an ordered semihypergroup if (H, \circ) is a semihypergroup and (H, \leq) is a partially set such that the compatible condition hold as follows:

 $x\leq y\Rightarrow a\circ x\leq a\circ y \ \text{ and } \ x,y,a\in H,$ where, if A and B are non-empty subsets of H, then we say that $A\leq B$ if for every $a\in A$ there exists $b\in B$ such that $a\leq b.$

Definition 1.3. (Davvaz, Dehkordi & Heidari, 2010) Let H and Γ be two non-empty sets. H is called a Γ -semihypergroup if every $\gamma \in \Gamma$ is a hyperoperation on H, $x\gamma y \subseteq H$ for every $x,y \in H$, and for every $\alpha,\beta \in \Gamma$ and $x,y,z \in H$ we have

$$x\alpha(y\beta z) = (x\alpha y)\beta z.$$

Let A and B be two non-empty subsets of H and $\gamma \in \Gamma.$ We define

$$A\gamma B = \bigcup_{a \in A, b \in B} a\gamma b \text{ and } A\Gamma B = \bigcup_{a \in A, b \in B} A\gamma B$$

In the following, we present the definition of an ordered $\,\Gamma$ -semihypergroup and give some examples.

Definition 1.4. (Davvaz & Omidi, 2017) Let H and Γ be two non-empty sets. H is called anordered Γ -semihypergroup if H is a Γ -semihyper-

group and (H, \leq) is a partially ordered set such that the compatible condition hold as follows:

 $x\leq y\Rightarrow a\gamma x\leq a\gamma y \ \text{ and } \ x\gamma a\leq y\gamma a$ for all $x,y\in H,\gamma\in\Gamma,$ where, if A and B are non-empty subsets of H, then we say that $A\leq B$ if for every $a\in A$ there exists $b\in B$ such that $a\leq b.$

In the following, we denote an ordered Γ -semihypergroup (H,Γ,\leq) by H unless otherwise specified.

A non-empty subset A of an ordered Γ -semihypergroup H is called a sub Γ -semihypergroup of H if $A\Gamma A\subset A$.

Definition 1.5. (Tang, Davvaz, Xie & Yaqoob, 2017) Let H be an ordered Γ -semihypergroup. A nonempty subset I of H is called a left (resp. right) Γ -hyperideal of H if

- (i) $(H\Gamma I] \subseteq I$ (resp. $(I\Gamma H] \subseteq I$); and
- $(ii) \ \ \text{If} \ \ a \in I \ \ \text{and} \ \ b \in H \ \ \text{such that} \ \ b \leq a,$ then $b \in I.$ Equivalent $(I] \subseteq I.$

If I is both a left Γ -hyperideal and a right Γ -hyperideal of H, then it is called Γ -hyperideal of H

Definition 1.6. (Kondo & Lekkoksung, 2013) A nonempty subset Q of an ordered Γ -semihypergroup H is called a quasi- Γ -hyperideal of H if the following conditions hold:

- $(i) \ (Q\Gamma H]\cap (H\Gamma Q]\subseteq Q;$
- $(ii) \quad \text{When} \quad x \in Q \quad \text{and} \quad y \in H \quad \text{such that}$ $y \leq x, \ \text{implies} \quad y \in Q. \ \text{Equivalent} \quad (Q] \subseteq Q.$

Definition 1.7. Let H be an ordered Γ -semihypergroup. A sub- Γ -semihypergroup B of H is called an ordered m-left (resp. ordered n-right)- Γ -hyperideal of H if

- (i) $H^m \Gamma B \subseteq B$, (resp. $B \Gamma H^n \subseteq B$),
- (ii) for $x \in B$ and $y \in H$ such that

 $y \le x$, implies $y \in B$. Equivalent $(B] \subseteq B$.

Definition 1.8. Assume that Q is a sub- Γ -semihypergroup of an orered- Γ -semihypergroup H. Then Q is called an ordered (m,n)-quasi- Γ -hyperideal of H if

- (i) $(Q\Gamma H^n] \cap (H^m\Gamma Q) \subseteq Q$,
- $(ii) \quad \text{for} \quad x \in Q \quad \text{and} \quad y \in H \quad \text{such that}$ $y \leq x, \ \text{implies} \ y \in Q. \ \text{Equivalent} \ (Q] \subseteq Q.$

Example 1. (Omidi & Davvaz, 2017) Let $H = \{a,b,c,d\}$ and $\Gamma = \{\gamma,\beta\}$ be the set of binary hyperopera-tions defined as follows:

γ		b	c	d
\overline{a}	a	$\{a,b\}$	$\{c,d\}$	\overline{d}
b		b	$\{c,d\}$	d
c	$\{c,d\}$	$\{c,d\}$	c	d
d	d	d	d	d

β	a	b	c	d
\overline{a}	a	$\{a,b\}$	$\{c,d\}$	d
b	$\{a,b\}$	b	$\{c,d\}$	d
c	$\{c,d\}$	$\{c,d\}$	c	d
d	d	d	d	d

and $\leq = \{(a,a),(a,b),(b,b),(c,b),(c,c),(c,d),(d,b),(d,d)\}.$

Then H is an ordered Γ -semihypergroup. Let $A=\{c,d\}$, we have that $H^1\Gamma A=\{c,d\}=A$ and $A\Gamma H^2=\{c,d\}=A$, also for every $c,d\in A$, there exists $c,d\in H$ such that $c\leq c,c\leq d,d\leq d$. implies that (A]=A. Thus A is an ordered 1-left- Γ -hyperideal and A is an ordered 2-right- Γ -hyperideal of H. Let $A=\{c,d\}$, we have that $(H^1\Gamma A]\cap (A\Gamma H^2)=\{c,d\}\cap \{c,d\}=\{c,d\}=A$, also (A]=A. Hence A is an ordered (1,2)-quasi- Γ -hyperideal of H.

Example 2. (Omidi & Davvaz, 2017) Let $H = \{a,b,c,d,e\}$ and $\Gamma = \{\gamma,\beta\}$ be the sets of binary hyperoperations defined follows:

γ	a	b	c	d	e
a	$\{a,b\}$	$\{b,c\}$	c	$\{d,e\}$	e
b	$ \begin{cases} a, b \\ b, c \end{cases} $	c	c	$\{d,e\}$	e
c	c	c	c	$\{d,e\}$	e
d	$\{d,e\}$	$\{d,e\}$	$\{d,e\}$	d	e
e	e	e	e	e	e

β	a	b	c	d	e
\overline{a}	$\{b,c\}$	c	c	$\{d,e\}$	e
b	$\begin{cases} b, c \\ c \end{cases}$	c	c	$\{d,e\}$	e
c	c	c	c	$\{d,e\}$	e
d		$\{d,e\}$	$\{d,e\}$	d	e
e	e	e	e	e	e

and

 $\leq = \{(a,a),(b,b),(c,c),(d,d),(e,e),(c,d),(e,c),(e,d)\}.$ Then H is an ordered Γ -semihypergroup. Let $A = \{d,e\}, \text{ we have that } H^2\Gamma A = \{d,e\} = A \text{ and }$

 $A\Gamma H^3=\{d,e\}=A,$ also for every $d,e\in A,$ there exists $d,e\in H$ such that $d\leq d,d\leq e,e\leq d,e\leq e$ implies that (A]=A. Thus A is an ordered 2-left- Γ -hyperideal and A is an ordered 3-right- Γ -hyperideal of H. Let $A=\{d,e\},$ we have that $(H^2\Gamma A]\cap (A\Gamma H^3]=\{d,e\}\cap \{d,e\}=\{d,e\}=A,$ also (A]=A. Hence A is an ordered (2,3)-quasi- Γ -hyperideal of H. Lemma 1.9. (Omidi & Davvaz, 2017) Let K be a

Lemma 1.9. (Omidi & Davvaz, 2017) Let K be a non-empty subset of an ordered Γ -semihypergroup H we define $(K] := \{x \in H \mid x \leq k \text{ for some } k \in K\}$. For $K = \{k\}$, we write (k] instead of $(\{k\}]$. If A and B are non-empty subsets of H, then we have

- (1) $A \subseteq (A]$;
- (2) ((A]] = (A];
- (3) If $A \subseteq B$, then $(A] \subseteq (B]$;
- (4) $(A|\Gamma(B)] \subseteq (A\Gamma B)$;
- (5) $((A|\Gamma(B)] = (A\Gamma B);$
- (6) $(A \cap B] \subseteq (A] \cap (B]$;
- (7) $(A \cup B] = (A] \cup (B]$.

Lemma 1.10. Let H be an ordered Γ -semihypergroup and $\{A_i \mid i \in I\}$ a non-empty family of sub- Γ -semihypergroup of H. Then $\bigcap_{i \in I} A_i = \varnothing$ or $\bigcap_{i \in I} A_i$ is a

sub- Γ -semihypergroup of H.

Proof. Let $\{A_i \mid i \in I\}$ a non-empty family of sub- Γ -semihypergroup of H. Suppose that $\bigcap_{i \in I} A_i \neq \varnothing$. Let $a,b \in \bigcap_{i \in I} A_i \neq \varnothing$, we have $a,b \in A_i$ for all $i \in I$. since A_i is a sub- Γ -semihypergroup of H, $a\gamma b \subseteq A_i$ for all $i \in I$ and $\gamma \in \Gamma$. Hence $a\gamma b \subseteq \bigcap A_i$.

Therefore $\bigcap_{i\in I}A_i$ is a sub- Γ -semihypergroup of H.

Lemma 1.11. Let H be an ordered Γ -semihypergroup and A a sub- Γ -semihypergroup of H. Then $A^n\subseteq A$ for all positive integer n.

Proposition 1.12. Let H be an ordered Γ -semi-hypergroup, Q an ordered (m,n)-quasi- Γ -hyperideal of H and A a sub- Γ -semi-hypergroup of H such that (A]=A. Then $A\cap Q=\varnothing$ or $A\cap Q$ is an ordered (m,n)-quasi- Γ -hyperideal of A.

Proof. Assume that $A \cap Q \neq \emptyset$. Since Q and A are sub- Γ -semihypergroup of H, we have $A \cap Q$ is a

sub- Γ -semihypergroup of H. Since $A \cap Q \subseteq A$, we have $A \cap Q$ is a sub- Γ -semihypergroup of A. Thus $(A^m\Gamma(A \cap Q)] \cap ((A \cap Q)\Gamma A^n] \subseteq (A^m\Gamma Q] \cap (Q\Gamma A^n]$ $\subseteq (H^m\Gamma Q] \cap (Q\Gamma H^n]$ $\subset Q,$

and $(A^{^{m}}\Gamma(A\cap Q)]\cap((A\cap Q)\Gamma A^{^{n}}]\!\subseteq\!(A^{^{m}}\Gamma A]\cap(A\Gamma A^{^{n}}]$

 $\subseteq (A] \cap (A]$

 $=A\cap A$

= A.

We have $(A \cap Q] \subseteq (A] \cap (Q]$ $\subseteq A \cap Q$.

Hence, $(A\cap Q]=A\cap Q$. Therefore $A\cap Q$ is an ordered (m,n)-quasi- Γ -hyperideal of A.

Proposition 1.13. Let H be an ordered Γ -semi-hypergroup and $\{Q_i \mid i \in I\}$ a non-empty famity of ordered (m,n)-quasi- Γ -hyperideal of H. Then $\bigcap_{i \in I} Q_i = \varnothing \quad \text{or} \quad \bigcap_{i \in I} Q_i \quad \text{is an ordered} \quad (m,n)$ -quasi- Γ -hyperideal of H.

hyperideal of H. **Proof.** Assume that $\bigcap_{i \in I} Q_i \neq \varnothing$. By Lemma 1.7, we have $\bigcap_{i \in I} Q_i$ is a sub- Γ -semihyper-grou of H. For all $i \in I$, we have $(H^m\Gamma(\bigcap_{i \in I} Q_i)] \cap ((\bigcap_{i \in I} Q_i)\Gamma H^n]$ $\subseteq (H^m\Gamma Q_i] \cap (Q_i\Gamma H^n] \subseteq Q_i.$ Thus $(H^m\Gamma(\bigcap_{i \in I} Q_i)] \cap ((\bigcap_{i \in I} Q_i)\Gamma H^m] \subseteq \bigcap_{i \in I} Q_i$ and $(\bigcap_{i \in I} Q_i] \subseteq \bigcap_{i \in I} (Q_i] = \bigcap_{i \in I} Q_i$. Therefore, $\bigcap_{i \in I} Q_i$ is an

2. Main results

2.1. Ordered (m,n) -quasi- Γ -hyperideal and Ordered (m,n) - Γ -intersection Property

ordered (m,n)-quasi- Γ -hyperideal of H.

In this part, we characterize ordered m-left- Γ -hyperideals and ordered n-right- Γ -hyperideals in ordered Γ -semihypergroups and investigate the ordered (m,n)- Γ -intersection property of ordered (m,n)-quasi- Γ -hyperideals in ordered Γ -semihypergroups.

Theorem 2.1.1. Let H be an ordered Γ -semihypergroup. Then the following statements hold.

 $\begin{array}{ll} (i) \ \ \mathrm{If} \ \ \{A_i \mid i \in I\} \ \ \mathrm{is \ a \ non-empty \ family \ of \ ordered} \\ m \ \mathrm{-left-} \ \Gamma \ \mathrm{-hyperideal \ of} \ \ H, \ \ \mathrm{then} \ \bigcap_{i \in I} A_i = \varnothing \ \ \mathrm{or} \ \bigcap_{i \in I} A_i \end{array}$

is an ordered $\,m$ -left- Γ -hyperideal of $\,H.$

 $\begin{array}{ll} (ii) \ \ \mathrm{If} \ \ \{B_i \mid i \in I\} \ \ \mathrm{is \ a \ non-empty \ family \ of \ ordered} \\ n \ \mathrm{-right-} \Gamma \ \mathrm{-hyperideal \ of} \ \ H, \ \ \mathrm{then} \ \bigcap_{i \in I} B_i = \varnothing \ \ \mathrm{or} \\ \bigcap_{i \in I} B_i \ \ \mathrm{is \ an \ ordered} \ \ n \ \mathrm{-right-} \Gamma \ \mathrm{-hyperideal \ of} \ \ H. \end{array}$

Proof. (i) Assume that $\{A_i \mid i \in I\}$ is a non-empty family of ordered m-left- Γ -hyperideal of H and let $\bigcap_{i \in I} A_i \neq \varnothing$. By Lemma 1.7, we have $\bigcap_{i \in I} A_i$ is a sub- Γ -semihypergroup of H. For all $i \in I$, we have $H^m\Gamma(\bigcap_{i \in I} A_i) \subseteq H^m\Gamma A_i \subseteq A_i$. Thus $H^m\Gamma(\bigcap_{i \in I} A_i) \subseteq \bigcap_{i \in I} A_i$ and $(\bigcap_{i \in I} A_i] \subseteq \bigcap_{i \in I} (A_i] = \bigcap_{i \in I} A_i$. Therefore, $\bigcap_{i \in I} A_i$ is an ordered m-left- Γ -hyperideal of H.

 $\begin{array}{l} \text{ (ii) Assume that $\{B_i \mid i \in I\}$ is a non-empty} \\ \text{family of ordered n-right-Γ-hyperideal of H and let $\bigcap_{i \in I} B_i \neq \varnothing$. By Lemma 1.7, we have $\bigcap_{i \in I} B_i$ is a sub-Γ-semihypergroup of H. For all $i \in I$, we have $(\bigcap_{i \in I} B_i) \Gamma H^n \subseteq B_i \Gamma H^n \subseteq B_i$. Then $(\bigcap_{i \in I} B_i) \Gamma H^n \subseteq \bigcap_{i \in I} B_i$ and $(\bigcap_{i \in I} B_i] \subseteq \bigcap_{i \in I} (B_i] = \bigcap_{i \in I} B_i$. Therefore, $\bigcap_{i \in I} B_i$ is an ordered n-right-Γ-hyperideal of H.} \end{array}$

Lemma 2.1.2. Let H be an ordered Γ -semihypergroup and Q a non-empty subset of H. Then the following statements hold.

- (i) $(H^m\Gamma Q]$ is an ordered m -left- Γ -hyperideal of H.
- (ii) $(Q\Gamma H^n]$ is an ordered n -right- Γ -hyperideal of H.

Proof. (i) By Lemma 1.8, we have that
$$(H^{m}\Gamma Q]\Gamma(H^{m}\Gamma Q)\subseteq ((H^{m}\Gamma Q)\Gamma(H^{m}\Gamma Q)]$$

$$\subseteq ((H^{m}\Gamma H)\Gamma(H^{m}\Gamma Q)]$$

$$\subseteq (H\Gamma(H\Gamma H^{m-1}\Gamma Q)]$$

$$= ((H\Gamma H)\Gamma(H^{m-1}\Gamma Q)]$$

$$\subseteq (H\Gamma(H^{m-1}\Gamma Q)]$$

$$= ((H\Gamma H^{m-1})\Gamma Q)]$$

$$= (H^{m}\Gamma Q).$$

Hence, $(H^m\Gamma Q]$ is a sub- Γ -semihypergroup of H. We see that

$$\begin{split} H^{m}\Gamma(H^{m}\Gamma Q) &\subseteq H\Gamma(H\Gamma H^{m-1}\Gamma Q) \\ &= (H)\Gamma(H\Gamma H^{m-1}\Gamma Q) \\ &\subseteq (H\Gamma(H\Gamma H^{m-1}\Gamma Q)) \\ &= ((H\Gamma H)\Gamma(H^{m-1}\Gamma Q)) \\ &\subseteq (H\Gamma(H^{m-1}\Gamma Q)) \\ &= ((H\Gamma H^{m-1}\Gamma Q)) \end{split}$$

 $=(H^m\Gamma Q],$

and $((H^m\Gamma Q)] = (H^m\Gamma Q)$. Therefore, $(H^m\Gamma Q)$ is an ordered m-left- Γ -hyperideal of H. The case (ii) can be proved similarly (i).

Lemma 2.1.3. Let H be an ordered Γ -semihypergroup. Then the following statements hold.

- (i) Every ordered m -left- Γ -hyperideal is an ordered (m,n) -quasi- Γ -hyperideal of H for all positive integer n.
- (ii) Every ordered n -right- Γ -hyperideal is an ordered (m,n) -quasi- Γ -hyperideal of H for all positive integer m.

Proof. (i) Assume that A is an ordered m-left- Γ -hyperideal of H and let n be a positive integer. Then A is a sub Γ -semihypergroup of H. Thus $(H^m\Gamma A]\cap (A\Gamma H^n]\subseteq (H^m\Gamma A]\subseteq (A]=A$ and (A]=A. Therefore, A is an ordered (m,n)-quasi- Γ -hyperideal of H for all positive integer n. The case (ii) can be proved similarly (i).

Theorem 2.1.4. Let H be an ordered Γ -semihypergroup and A an ordered m-left- Γ -hyperideal and B an ordered n-right- Γ -hyperideal of H. Then $A\cap B=\varnothing$ or $A\cap B$ is an ordered (m,n)-quasi- Γ -hyperideal of H.

Proof. Assume that $A \cap B \neq \emptyset$. Since A and B are sub- Γ -semihypergroups of H, we have $A \cap B$ is a sub- Γ -semihypergroup of H. We see that $(H^m\Gamma(A \cap B)] \cap ((A \cap B)\Gamma H^n] \subseteq (H^m\Gamma A] \cap (B\Gamma H^n]$

$$\subseteq (A] \cap (B]$$
$$= A \cap B.$$

and $(A \cap B] \subseteq (A] \cap (B] = A \cap B$. Hence, $A \cap B$ is an ordered (m,n)-quasi- Γ -hyperideal of H.

Definition 2.1.5. A sub- Γ -semihypergroup Q of an ordered Γ -semihypergroup H has the ordered (m,n) - Γ -intersection property if Q is the intersection of an ordered m -left- Γ -hyperideal and an ordered n -right- Γ -hyperideal of H.

Theorem 2.1.6. Let H be an ordered Γ -semihypergroup and Q an ordered (m,n)-quasi- Γ -hyperideal of H. Then following statements are equivalent.

- (i) Q has the ordered (m,n)- Γ -intersection property.
- (ii) $(Q \cup H^m \Gamma Q) \cap (Q \cup Q \Gamma H^n) = Q$.
- $(iii) \ (H^{m}\Gamma Q] \cap (Q \cup Q\Gamma H^{n}] \subseteq Q.$

(iv) $(Q \cup H^m \Gamma Q) \cap (Q \Gamma H^n) \subseteq Q$.

Proof. $(i) \rightarrow (ii)$ Assume that Q has the ordered $(m,n) \cdot \Gamma$ -intersection property. Since $Q \subseteq Q \cup (H^m \Gamma Q] = (Q] \cup (H^m \Gamma Q) = (Q \cup (H^m \Gamma Q)]$ and $Q \subseteq Q \cup (Q \Gamma H^n] = (Q] \cup (Q \Gamma H^n] = (Q \cup (Q \Gamma H^n)],$

we have $Q\subseteq (Q\cup H^m\Gamma Q]\cap (Q\cup (Q\Gamma H^n].$ Since Q has the ordered $(m,n)\cdot \Gamma$ -property, there exist an ordered m-left- Γ -hyperideal A and ordered n-right- Γ -hyperideal B of H, such that $Q=A\cap B.$ This implies that $Q\subseteq A$ and $Q\subseteq B$, so $(H^m\Gamma Q)\subseteq (H^m\Gamma A)\subseteq (A]=A$ and $(Q\Gamma H^n)\subseteq (B\Gamma H^n)\subseteq (B]=B.$ Thus $(Q\cup H^m\Gamma Q)=(Q]\cup (H^m\Gamma Q)=Q\cup (H^m\Gamma Q)\subseteq A$ and $(Q\cup Q\Gamma H^n)=(Q)\cup (Q\Gamma H^n)=Q\cup (Q\Gamma H^n)\subseteq B.$ Hence, $(Q\cup H^m\Gamma Q)\cap (Q\cup Q\Gamma H^n)\subseteq A\cap B=Q.$ Therefore, $(Q\cup H^m\Gamma Q)\cap (Q\cup Q\Gamma H^n)=Q.$

(ii)
ightarrow (i) Assume that $(Q \cup H^m \Gamma Q) \cap (Q \cup Q \Gamma H^n] = Q$. We shall show that $(Q \cup H^m \Gamma Q)$ is an ordered m-left- Γ -hyperideal and $(Q \cup Q \Gamma H^n]$ an ordered n-right- Γ -hyperideal of H. By Lemma 2.1.2, we have $(H^m \Gamma Q)$ is an ordered m-left- Γ -hyperideal and $(Q \Gamma H^n]$ an ordered n-right- Γ -hyperideal of H and so $(H^m \Gamma Q)$ and $(Q \Gamma H^n)$ are sub- Γ -semihypergroup of H. We see that $(Q \cup H^m \Gamma Q) \Gamma (Q \cup H^m \Gamma Q)$

- $= (Q \cup (H^{m}\Gamma Q])\Gamma(Q \cup (H^{m}\Gamma Q])$
- $= (Q \Gamma Q) \cup (H^m \Gamma Q) \Gamma Q \cup Q \Gamma (H^m \Gamma Q) \cup (H^m \Gamma Q) \Gamma (H^m \Gamma Q)$
- $\subseteq (Q\Gamma Q) \cup (H^m\Gamma Q]\Gamma(Q)$

 $\cup (H]\Gamma(H^{m}\Gamma Q] \cup (H^{m}\Gamma Q]\Gamma(H^{m}\Gamma Q)$

 $\subseteq (Q\Gamma Q) \cup (H^m\Gamma Q\Gamma Q] \cup (H\Gamma H^m\Gamma Q] \cup (H^m\Gamma Q\Gamma H^m\Gamma Q]$

- $\subseteq Q \cup (H^m \Gamma Q) \cup (H^m \Gamma Q) \cup (H^m \Gamma Q)$
- $= Q \cup (H^m \Gamma Q)$
- $=(Q\cup H^m\Gamma Q].$

Thus $(Q \cup H^m \Gamma Q]$ is a sub- Γ -semihypergroup of H. So, we have

 $H^m\Gamma(Q\cup H^m\Gamma Q)=H^m\Gamma(Q\cup (H^m\Gamma Q))$ $=H^m\Gamma Q\cup H^m\Gamma(H^m\Gamma Q)$ $\subseteq H^m\Gamma Q\cup (H^m\Gamma Q)$ (By Lemma 2.1.2)

 $= (H^m \Gamma Q]$ $\subseteq (Q] \cup (H^m \Gamma Q]$

```
(Q \cup H^m \Gamma Q) \cap (Q \Gamma H^n) \subseteq (Q \cup H^m \Gamma Q) \cap (Q \cup Q \Gamma H^n)
                         =(Q\cup H^m\Gamma Q],
and ((Q \cup H^m \Gamma Q)] = (Q \cup H^m \Gamma Q). Hence
                                                                                      =Q. Hence, (Q \cup H^m \Gamma Q) \cap (Q \Gamma H^n) \subseteq Q.
(Q \cup H^m \Gamma Q) is an ordered m-left-\Gamma-hyperideal of
                                                                                                (iv) \rightarrow (ii) Assume that
                                                                                      (Q \cup H^m \Gamma Q) \cap (Q \Gamma H^n) \subseteq Q. Since Q \subseteq Q \cup (Q \Gamma H^n)
            In a same way, we can proof that
                                                                                      =(Q\cup Q\Gamma H^n] and Q\subseteq Q\cup (H^m\Gamma Q)=(Q\cup H^m\Gamma Q),
(Q \cup Q\Gamma H^n] is an ordered n-right-\Gamma-hyperideal of
                                                                                     it follows that Q \subseteq (Q \cup H^m \Gamma Q) \cap (Q \cup Q \Gamma H^n).
H. We see that (Q \cup Q\Gamma H^n)\Gamma(Q \cup Q\Gamma H^n)
                                                                                     We see that (Q \cup H^m \Gamma Q) \cap (Q \cup Q \Gamma H^n)
= (Q \cup (Q\Gamma H^n])\Gamma(Q \cup (Q\Gamma H^n])
                                                                                      = (Q \cup (H^m \Gamma Q]) \cap (Q \cup (Q \Gamma H^n])
= (Q\Gamma Q) \cup Q\Gamma(Q\Gamma H^n] \cup (Q\Gamma H^n]\Gamma Q \cup (Q\Gamma H^n]\Gamma(Q\Gamma H^n)
                                                                                      = ((Q \cup (Q \Gamma H^n]) \cap Q) \cup ((Q \cup (H^m \Gamma Q]) \cap (Q \Gamma H^n])
\subseteq (Q\Gamma Q) \cup (Q]\Gamma(Q\Gamma H^n] \cup (Q\Gamma H^n]\Gamma(H] \cup (Q\Gamma H^n]\Gamma(Q\Gamma H^n]
                                                                                      \subset Q \cup Q
                                                                                      = Q.
\subseteq Q\Gamma Q \cup (Q\Gamma Q\Gamma H^n] \cup (Q\Gamma H^n\Gamma H) \cup (Q\Gamma H^n\Gamma Q\Gamma H^n]
                                                                                     Therefore, (Q \cup H^m \Gamma Q) \cap (Q \cup Q \Gamma H^n) = Q.
\subseteq Q \cup (Q\Gamma H^n] \cup (Q\Gamma H^n] \cup (Q\Gamma H^n]
                                                                                     Lemma 2.1.7. Every ordered m-left-\Gamma-hyperideal
= Q \cup (Q\Gamma H^n]
                                                                                     and ordered n -right- \Gamma -hyperideal of an ordered \Gamma -
= (Q \cup Q\Gamma H^n].
                                                                                     semihypergroup have the ordered (m,n) - \Gamma -intersec-
Thus (Q \cup Q\Gamma H^n] is a sub-\Gamma-semihypergroup of H.
                                                                                     tion property.
So, we have
                                                                                     Proof. Let A be an ordered m-left-\Gamma-hyperideal
(Q \cup Q\Gamma H^n]\Gamma H^n = (Q \cup (Q\Gamma H^n])\Gamma H^n
                                                                                     and B an ordered n -right- \Gamma -hyperideal of an or-
                       = Q\Gamma H^n \cup (Q\Gamma H^n]\Gamma H^n
                                                                                     dered \Gamma -semihypergroup H. Since A is an ordered
                       \subseteq Q\Gamma H^n \cup (Q\Gamma H^n] (By Lemma 2.1.2)
                                                                                      m -left- \Gamma -hyperideal of H, by lemma 2.1.3 (i) ,
                       =(Q\Gamma H^n]
                                                                                      (i) we have that A is an ordered (m,n)-quasi-\Gamma-
                       \subseteq (Q] \cup (Q\Gamma H^n]
                                                                                     hyper-ideal of H. So, we have
                       =(Q\cup Q\Gamma H^n],
                                                                                      (H^{m}\Gamma A] \cap (A \cup A\Gamma H^{n}] = (H^{m}\Gamma A] \cap (A \cup (A\Gamma H^{n}])
and ((Q \cup Q\Gamma H^n)] = (Q \cup Q\Gamma H^n). Hence, (Q \cup Q\Gamma H^n)
                                                                                      = ((H^{m}\Gamma A] \cap A) \cup ((H^{m}\Gamma A] \cap (A\Gamma H^{n}))
is an ordered n-right-\Gamma-hyperideal of H. Therefore,
                                                                                      \subset A \cup A
Q has the ordered (m,n) - \Gamma -intersection property.
                                                                                      = A.
          (ii) \rightarrow (iii) Assume that
                                                                                     By Theorem 2.1.6, we have that A has the ordered
(Q \cup H^m \Gamma Q) \cap (Q \cup Q \Gamma H^n) = Q. Since (H^m \Gamma Q)
                                                                                      (m,n) - \Gamma -intersection property. Next, we will show
                                                                                     that B has the ordered (m,n) - \Gamma -intersection
\subseteq (Q] \cup (H^m \Gamma Q) = (Q \cup H^m \Gamma Q), it follows that
                                                                                     property. Since B is an ordered n -right- \Gamma -hyper-
(H^{m}\Gamma Q) \cap (Q \cup Q\Gamma H^{n}) \subseteq (Q \cup H^{m}\Gamma Q) \cap (Q \cup Q\Gamma H^{n})
                                                                                     ideal of H, by Theorem 2.1.3,
=Q. Hence, (H^{m}\Gamma Q]\cap (Q\cup Q\Gamma H^{n}]\subseteq Q.
                                                                                      (ii) we have that B is an ordered (m,n)-quasi-\Gamma-
          (iii) \rightarrow (ii) Assume that
                                                                                     hyperideal of H. So, we have (B \cup H^m \Gamma B] \cap (B\Gamma H^n)
(H^m\Gamma Q]\cap (Q\cup Q\Gamma H^n]\subseteq Q. Since Q\subseteq Q\cup (H^m\Gamma Q]
                                                                                      =(B\cup (H^m\Gamma B])\cap (B\Gamma H^n]
=(Q \cup H^m \Gamma Q) and Q \subseteq Q \cup (Q \Gamma H^n) = (Q \cup Q \Gamma H^n),
                                                                                      = (B \cap (B\Gamma H^n]) \cup ((H^m \Gamma B] \cap (B\Gamma H^n])
it follows that Q \subseteq (Q \cup H^m \Gamma Q) \cap (Q \cup Q \Gamma H^n). We
                                                                                     \subseteq B \cup B
see that (Q \cup H^m \Gamma Q) \cap (Q \cup Q \Gamma H^n)
= (Q \cup (H^m \Gamma Q]) \cap (Q \cup (Q \Gamma H^n])
                                                                                     By Theorem 2.1.6, we have that \,B\, has the ordered
= (Q \cap (Q \cup (Q\Gamma H^n))) \cup ((H^m \Gamma Q) \cap (Q \cup Q\Gamma H^n))
                                                                                      (m,n) - \Gamma -intersection property.
\subseteq Q \cup Q
                                                                                     Proposition 2.1.8. Let H be an ordered \Gamma-semi-
= Q.
                                                                                     hypergroup and Q an ordered (m,n)-quasi-\Gamma-
Therefore, (Q \cup H^m \Gamma Q) \cap (Q \cup Q \Gamma H^n) = Q.
                                                                                     hyperideal of H. If H^m\Gamma Q\subseteq Q\Gamma H^n or Q\Gamma H^n
          (ii) \rightarrow (iv) Assume that
                                                                                      \subseteq H^m\Gamma Q, then Q has the ordered (m,n)-\Gamma-inter-
(Q \cup H^m \Gamma Q) \cap (Q \cup Q \Gamma H^n) = Q. Since (Q \Gamma H^n)
                                                                                     section property.
\subseteq (Q] \cup (Q\Gamma H^n] = (Q \cup Q\Gamma H^n], it follows that
```

Proof. Assume that $H^m\Gamma Q\subseteq Q\Gamma H^n$. It is evident that $(H^m\Gamma Q)\subseteq (Q\Gamma H^n]$. Since Q is an ordered (m,n)-quasi- Γ -hyperideal of H, we get $H^m\Gamma Q\subseteq (H^m\Gamma Q)=(H^m\Gamma Q)\cap (Q\Gamma H^n)\subseteq Q$. This means that Q is an ordered m-left- Γ -hyperideal of H. By Lemma 2.1.7, we have that Q has the ordered (m,n)- Γ -intersection property. Similarly, we obtain $Q\Gamma H^n\subseteq H^m\Gamma Q$. Then $(Q\Gamma H^n)\subseteq (H^m\Gamma Q)$. Since Q is an ordered (m,n)-quasi- Γ -hyperideal of H, we get $Q\Gamma H^n\subseteq (Q\Gamma H^n)=(H^m\Gamma Q)\cap (Q\Gamma H^n)\subseteq Q$. This means that Q is an ordered M-right-M-hyperideal of M- By Lemma 2.1.7, we have that M- has the ordered M- intersection property. This completes the proof.

2.2. Ordered (m,n)-quasi- Γ -hyperideals in Regular Ordered Γ -semihypergroups

We have investigated in the previous section that every ordered m-left- Γ -hyperideal and ordered n-right- Γ -hyperideal of an ordered Γ -semihypergroup have the ordered (m,n)- Γ -intersection property, but not for ordered (m,n)-quasi- Γ -hyperideals in ordered Γ -semihypergroups. In this section, we will prove that every ordered (m,n)-quasi- Γ -hyperideal of a regular ordered Γ -semihypergroup has the ordered (m,n)- Γ -intersection property.

Definition 2.2.1. (Omidi. & Davvaz, 2017) An element a of an ordered Γ -semihypergroup H is regular if there exist $x \in H$ and $\alpha, \beta \in \Gamma$, such that $a \leq a\alpha x\beta a$. This is equivalent to saying that $a \in (a\Gamma H\Gamma a]$, for every $a \in H$ or $A \in (A\Gamma H\Gamma A]$, for every $A \subseteq H$.

Lemma 2.2.2. Let H be a regular ordered Γ -semihypergroup and A a non-empty subset of H. Then the following statements hold.

- (i) $A \subseteq (H^m \Gamma A)$ for all positive integer m.
- (ii) $A \subseteq (A\Gamma H^n]$ for all positive integer n.

Proof. (i) Let $a \in A$. Since H is regular, there exists $x \in H$ and $\alpha, \beta \in \Gamma$ such that $a \leq a\alpha x\beta a$. Since $a\alpha x \subseteq H$, it follows that $a \leq a\alpha x\beta a = (a\alpha x)\beta a$ $\subseteq H\Gamma A$ and so $A \subseteq (H\Gamma A]$. Let m be a positive integer such that $A \subseteq (H^m\Gamma A]$. Then we have $H\Gamma A \subseteq H\Gamma(H^m\Gamma A)=(H]\Gamma(H^m\Gamma A)\subseteq (H\Gamma(H^m\Gamma A))=(H^{m+1}\Gamma A]$. Hence $A\subseteq (H^{m+1}\Gamma A]$. Therefore, $A\subseteq (H^m\Gamma A)$ for all positive integer m.

exists $x \in H$ and $\alpha, \beta \in \Gamma$ such that $a \leq a\alpha x\beta a$. Since $x\beta a \subseteq H$, it follows that $a \leq a\alpha x\beta a$ $= a\alpha(x\beta a) \subseteq A\Gamma H$ and so $A \subseteq (A\Gamma H]$. Let n be a positive integer such that $A \subseteq (A\Gamma H^n]$. Then we have $A\Gamma H \subseteq (A\Gamma H^n]\Gamma H = (A\Gamma H^n]\Gamma (H]$ $\subseteq ((A\Gamma H^n)\Gamma H) = (A\Gamma H^{n+1}]$. Hence $A \subseteq (A\Gamma H^{n+1}]$. Therefore, $A \subseteq (A\Gamma H^n]$ for all positive integer n. Theorem 2.2.3. Every ordered (m,n)-quasi- Γ -hyperideal of a regular ordered Γ -semihypergroup has the ordered (m,n)- Γ -intersection property. Proof. Let Q be an ordered (m,n)-quasi- Γ -hyperideal of a regular ordered Γ -semihypergroup H. By Lemma 2.2.2, we have $Q \subseteq (Q\Gamma H^n]$ and so $(Q \cup Q\Gamma H^n] = Q \cup (Q\Gamma H^n]$. Thus

(ii) Let $a \in A$. Since H is regular, there

Theorem 2.1.6, we have that Q has the ordered (m,n) - Γ -intersection property.

 $(H^m\Gamma Q]\cap (Q\cup Q\Gamma H^n]=(H^m\Gamma Q]\cap (Q\Gamma H^n]\subseteq Q$. By

Theorem 2.2.4. Let H be a regular ordered Γ -semihypergroup and A a non-empty subset of H. Then A is an ordered (m,n)-quasi- Γ -hyperideal of H if and only if $A=(H^m\Gamma A]\cap (A\Gamma H^n]$.

Proof. Assume that A is an ordered (m,n)-quasi- Γ -hyperideal of H. Then $(H^m\Gamma A]\cap (A\Gamma H^n]\subseteq A$. By Lemma 2.2.2 we have $A\subseteq (H^m\Gamma A]$ and $A\subseteq (A\Gamma H^n]$ and so $A\subseteq (H^m\Gamma A]\cap (A\Gamma H^n]$. Therefore, $A=(H^m\Gamma A]\cap (A\Gamma H^n]$.

Conversely, assume that $A=(H^m\Gamma A]\cap (A\Gamma H^n]$. By Theorem 2.1.2, we have $(H^m\Gamma A]$ is an ordered m-left- Γ -hyperideal and $(A\Gamma H^n]$ is an ordered n-right- Γ -hyperideal of H. By Theorem 2.1.4, we have that A is an ordered (m,n)-quasi- Γ -hyperideal of H.

3. Conclusions

The results of the resecrch would be that every ordered m-left- Γ -hyperideal and ordered n-right- Γ -hyperideal of ordered Γ -semihypergroups have the ordered (m,n)- Γ -intersection property, but not for ordered (m,n)-quasi- Γ -hyperideals in ordered- Γ -semihypergroups. We have added some properties of the ordered- Γ -semihypergroups, resulting in every ordered (m,n)-quasi- Γ -hyper-

ideals of a regular ordered- Γ -semihypergroup having the ordered (m,n)- Γ -intersection property.

Acknowledgements: I would like to express my thanks to the referees for his very helpful suggestions and coments. This research was supported by Buriram Rajabhat University.

Reference

- [1] Kondo, M. and Lekkoksung N. 2013. On intraregular Γ -semihypergroup. Internation Journal of Math Analysis. 7(28): 1379-1386.
- [2] Omidi, S. and Davvaz B. 2018. Some properties of quasi- Γ -hyperideals and hyperfilters in ordered- Γ -semihypergroups. Southeast Asian Bulletin of Mathematics. 42(2): 223-242.
- [3] Omidi, S. and Davvaz B. 2017. C- Γ -hyperideal theory in ordered Γ -semihypergroup. **Journal of Mathematical and Fundamental Sciences.** 49(2): 181-192.
- [4] Yaqoob, N. and Aslam M. 2014. Prim (m,n) bi- Γ hyperideals in Γ -semihypergroups. **Applied** Mathematics & Information Sciences. 8(5): 2243-2249
- [5] Anvariyeh, S.M., Mirvakili, S. and Davvaz, B. 2010. On Γ -hyperideals in Γ -semihypergroups. Carpathian Journal of Mathematics. 26(1): 11-23.
- [6] Tang, J., Davvaz, B., Xie, X.Y. and Yaqoob, N. 2017. On fuzzy interior Γ -hyperideals in Γ -semihypergroups. Journal of Intelligent &

Fuzzy Systems. 32(3): 2447-2460.

- [7] Omidi, S. and Davvaz B. 2018. Some characterizations of right weakly prime $\,\Gamma$ hyperideals of ordered $\,\Gamma$ -semihypergroups. Mathematica Montisnigri. 42: 5-11.
- [8] Omidi, S. and Davvaz B. 2017. Bi- Γ -hyperideals and green's relations in ordered Γ semihypergroups. **Eurasian Mathematica Journal.** 8(4): 63-73.
- [9] Omidi, S. and Davvaz B. 2017. Convex ordered Γ -semihypergroups associated to stongly regular relations. **Matematika.** 33(2): 227-240.
- [10] Davvaz, B., Dehkordi, S.O., and Heidari, D. 2010. Γ -semihypergroups and properties. **U.P.B** Scientific Bulletin A. 72(1): 195-208.
- [11] Marty, F. 1934. Sur une generalization de la notion de groupe. 8^{tem} Congress Math. Scandinaves. Stockholm. 45-49.
- [12] Sen, M.K., and Saha, N.K. 1986. On $\,\Gamma$ -semigroup I. Bull. Cal. Math. Soc. 78(3): 180-186.
- [13] Steinfeld, O. (1956). Uber die Quasiideale von Halbgruppen. **Publicationes Mathematicae Debrecen.** (4): 262–275.
- [14] Thongrak, S. and lampan, A. (2018). Characterizations of ordered semigroups by the properties of their ordered (m,n)-quasi-ideals. Palestine Journal of Mathematics. 7(1): 299-306.