
Introduction to Next.js
Asst.Prof.Drusawin Vongpramate

Department of Information Technology

Faculty of Science, BRU

Main Topic Sub Topic

Hint



What's in Next.js?

Next.js is a React framework for building full-
stack web applications. You use React Components 
to build user interfaces, and Next.js for additional 
features and optimizations.

Ref: https://nextjs.org/docs/app/



Main Features
Feature Description

Routing
A file-system based router built on top of Server Components 
that supports layouts, nested routing, loading states, error 
handling, and more.

Rendering

Client-side and Server-side Rendering with Client and Server 
Components. Further optimized with Static and Dynamic 
Rendering on the server with Next.js. Streaming on Edge and 
Node.js runtimes.

Data Fetching
Simplified data fetching with async/await in Server 
Components, and an extended fetch API for request 
memoization, data caching and revalidation.

Styling
Support for your preferred styling methods, including CSS 
Modules, Tailwind CSS, and CSS-in-JS

Optimizations
Image, Fonts, and Script Optimizations to improve your 
application's Core Web Vitals and User Experience.

TypeScript
Improved support for TypeScript, with better type checking and 
more efficient compilation, as well as custom TypeScript Plugin 
and type checker.

https://nextjs.org/docs/app/building-your-application/routing
https://nextjs.org/docs/app/building-your-application/rendering
https://nextjs.org/docs/app/building-your-application/data-fetching
https://nextjs.org/docs/app/building-your-application/styling
https://nextjs.org/docs/app/building-your-application/optimizing
https://nextjs.org/docs/app/building-your-application/configuring/typescript


App Router vs Pages Router

• Next.js has two different routers: the App Router 
and the Pages Router. 

• The App Router is a newer router that allows you to 
use React's latest features, such as Server 
Components and Streaming. 

• The Pages Router is the original Next.js router, 
which allowed you to build server-rendered React 
applications and continues to be supported for 
older Next.js applications.



Routing



Roles of Folders and Files

• Next.js uses a file-system based router where:

• Folders are used to define routes. A route is a single 
path of nested folders, following the file-system 
hierarchy from the root folder down to a final leaf 
folder that includes a page.js file. See Defining 
Routes.

• Files are used to create UI that is shown for a route 
segment. See special files (next slide)



File Conventions

layout Shared UI for a segment and its children

page
Unique UI of a route and make routes publicly 
accessible

loading Loading UI for a segment and its children

not-found Not found UI for a segment and its children

error Error UI for a segment and its children

global-error Global Error UI

route Server-side API endpoint

template Specialized re-rendered Layout UI

default Fallback UI for Parallel Routes

.js, .jsx, or .tsx file extensions can be used for special files.

https://nextjs.org/docs/app/building-your-application/routing/pages-and-layouts#layouts
https://nextjs.org/docs/app/building-your-application/routing/pages-and-layouts#pages
https://nextjs.org/docs/app/building-your-application/routing/loading-ui-and-streaming
https://nextjs.org/docs/app/api-reference/file-conventions/not-found
https://nextjs.org/docs/app/building-your-application/routing/error-handling
https://nextjs.org/docs/app/building-your-application/routing/error-handling
https://nextjs.org/docs/app/building-your-application/routing/route-handlers
https://nextjs.org/docs/app/building-your-application/routing/pages-and-layouts#templates
https://nextjs.org/docs/app/api-reference/file-conventions/default
https://nextjs.org/docs/app/building-your-application/routing/parallel-routes


Component Hierarchy



Colocation



Rendering

• Rendering converts the code you write into user 
interfaces. React and Next.js allow you to create 
hybrid web applications where parts of your code 
can be rendered on the server or the client. This 
section will help you understand the differences 
between these rendering environments, strategies, 
and runtimes.



Request-Response Lifecycle

*React Server Component Payload



Cross-Origin Resource Sharing 
(CORS)

• Cross-site HTTP requests are HTTP requests for 
resources from a different domain than the domain 
of the resource making the request. For instance, 
an HTML page from Domain A 
(http://domaina.example/) makes a request for an 
image on Domain B (http://domainb.foo/image.jpg) 
via the img element. Web pages today very 
commonly load cross-site resources, including CSS 
stylesheets, images, scripts, and other resources. 
CORS allows web developers to control how their 
site reacts to cross-site requests.



Cross-Origin Resource Sharing 
(CORS)



Network Boundary

• The Network Boundary is a conceptual line that 
separates the different environments. For example, the 
client and the server, or the server and the data store. 
the work is split into two parts: the client module 
graph and the server module graph. The server module 
graph contains all the components that are rendered 
on the server, and the client module graph contains all 
components that are rendered on the client. You can 
use the React "use client" convention to define the 
boundary. There's also a "use server" convention, 
which tells React to do some computational work on 
the server.



Network Boundary

Source code not include data

Source code included data, SEO loves





Q & A


	Slide 1: Introduction to Next.js
	Slide 2: What's in Next.js?
	Slide 3: Main Features
	Slide 4: App Router vs Pages Router
	Slide 5: Routing
	Slide 6: Roles of Folders and Files
	Slide 7: File Conventions
	Slide 8: Component Hierarchy
	Slide 9: Colocation
	Slide 10: Rendering
	Slide 11
	Slide 12: Cross-Origin Resource Sharing (CORS)
	Slide 13: Cross-Origin Resource Sharing (CORS)
	Slide 14: Network Boundary
	Slide 15: Network Boundary
	Slide 16
	Slide 17: Q & A

