Design & React

Asst.Prof.Drusawin Vongpramate
Department of Information Technology

Faculty of Science, BRU

Hint

- Main Topic Sub Topic

Web Design Process

Prototyping UX Design Testing
Analyzing Ul Design MVF
Requirements We make a prototype We bulld a flexible Development We examine the
that Includes the and responsive UX design on all
We analyze your features, content, 3:1:1?5?":1 ?g:ldgl?r deslgn using complex We develop an levels and we test
technical requirements | | homepage, and the N ebssllna th a?ls and modem MVP of the It through
to define the technical | | nital designs for your technologles. webslte ready different devices.
tools and resources website. atiractive, unique, for testing and
needed. and easy 10 navigate. Improving.

MVP : Minimum Viable Product
A development approach where a product is built with the minimum features necessary to satisfy the early adopters or

users and gather valuable feedback for further development. The primary goal of an MVP is to validate the core concept of
the product while minimising the time, resources, and costs involved in its development. By launching an MVP, developers
can test the product idea in the market, identify its strengths and weaknesses, and make improvements based on user

feedback before investing in developing a full-fledged product.

Web Design Types

Web Design Types

_ Single Page
We choose the nght layout or style based on fnm A Skl pe we beie et
your needs and objectives <D Fckocios obe EITHIL pege
Hesponsive Bosign Static Website

A website design that includes
flexible images and layouts for
smooth navigation on different

screens and devices

multiple HTMLfiles and is
delivered to web browsers
as stored.

‘ A static website includes
5]

Fixed Design =) : i
I g II Dynamic Website
A de-3|gn vfnth a fixed sizes —— A database driven site that
and dimensions even when

includes content and
elements that change
based on different factors.

viewed on different screens
and devices.

Website Layout Types

Zigzag Layout F - shape Layout Grid Layout Split-screen
Rows of images that are A design that establishes A grid system is a series A web layout where
arranged over one another a visual hierarchy to get of boxes, or columns, the web components

on one side while the visitors' attention to that you divide your are divided into two
text is on the opposite. specific elements. page into. vertical columns.
"""""""""""" ,',\,; A o e Block Grid Multicolumn Grid
0——O
Modilar Grid Hierarchical Grid
. i N P i _ oot

Web Component

HEADER

IMAGE SECTION

FOOTER

BLOG POST

FEATURES

TEXT

SIDE BLOCKS

L

Wil

Library/Framework

Page One Page Two Page Three Search ‘ Sort by PRICE RU /EN

Submenu One / SubmenuTwo [/ Submenu Three / Submenu Four

% []
Tag One x Tag Two X Tag Three +
Step 1 Step 2 Step 3 Step 4 Step 5 g

. L
STATIC STATIC STATIC DROPDOWN | ~ 12.10.2016 | w
|

HOVER HOVER (HOVER > Select One < October 2016 > - - .

1 2 3 4 5 6 7 _J-L/
PRESSED PRESSED (PRESSED) 2 9 10 11 12 @14
Select Three 15 16 17 18 19 20 2 < 1204 5 >
22 23 24 25 26 27 28
Select Four 29 30 31 AUTOCOMPLITE
Ca

LARGE LARGE LARGE

o LOGIN Cat

You name

@
MORMAL) @ - o o
)

NORMAL NORMAL

PASSWORD

w - ceesene Catholic

SMALL SMALL SMALL

Y

UI/UX Design Tools

Xd \

VS VS VS
Adobe XD InVision Studio Sketch Figma

Figma
a) , . .
=. Products ~ Solutions ~¥ Community v Resources ~ Pricing Contact sales Login Get started for free

Think bigger.
Build faster.

Figma helps design and development teams build great
products, together.

Get started for free

B [1m] $%°v > e

Trivet ~ Design Prototype 100% v
i = - Frama & W w
File: < . o
Hi Chef ’ < '& Yasmin
- Position
~ Pages -+
Your fricnds are cooking =zl = O h I
T Overview
X0 Y 0 ks
“. Copy lerations - \
1 . Lo h £ 8
*. Design Crit Feedback " s g,

React

* The library for web and native user interfaces

e React lets you build user interfaces out of individual
pieces called components. Create your own React
components like Thumbnail, LikeButton, and Video.
Then combine them into entire screens, pages, and

apps.

React

t React fron import React from 'react’';

s HelloWorld extends (ne const HelloWorld ({name})
constructor(props) { const sayHi (event) => {
super(props) ; alert(Hi name}’);

};

sayHi(event) { return (
alert(Hi 1is.proj)i <div>
<a
href="#"
onClick={sayHi}>Say Hi
</div>

href ,II#II
onClick={

React

Functional Component Vs class COmponent

N

Functional vs Class

Statef Stateless

Request contains
limited information

Additional
information is
fetched from state

/_N Request contains

all information

6 , required to
process it

State storage

Stateless

Does not require the server to retain
information about the state.

Server design, implementation
and architecture is simple.

Handles crashes well, as we can fail
over to a completely new server.
Servers are regarded as cheap
commodity machines.

Scaling architecture is easy.

Stateful

Requires a server to save information
about a session.

Server design, implementation
and architecture is complicated.

Does not handle crashes well.
Servers are regarded as valuable
and long-living. The user would
probably be logged out and have
to start from the beginning.

Scaling architectures is difficult
and complex.

React

Go full-stack with a framework

React is a library. It lets you put components
together, but it doesn’t prescribe how to do routing
and data fetching. To build an entire app with React,
we recommend a full-stack React framework like
Next.js or Remix.

import { useState } from 'react'

React Videos
function SearchableVideolList({ videos }) { A brief history of React
onst [searchText, setSearchText] = useState('');
onst foundVideos = filterVideos(videos, searchText); Q Search
rrrrrr (
5 Videos
Input
value={searc hText}
onChange={newText => setSearchText (newText 3/ PNIBESIE React: The Documentary @

<VideolList The origin story of React

sy .thinking Best Practices V)
Pete H

TypeScript

TypeScript is JavaScript with syntax for types.

TypeScript is a strongly typed programming language
that builds on JavaScript, giving you better tooling at
any scale.

TS

TypeScript Style

import React from 'react
import MyButton from °

App: React.FC =
return

Welcome to My Page

MyButton title="I'm a button™
‘use client’

function MyButton({ title }: { title: string }) {

const handleClick = () => { e
console.log('clicked'); = efault App;

Ji2

return (
<button onClick={handleClick}>{title}</button>
)s Props {
title: string;
id?: string;
export default function MyApp() { }
return (
<div> MyButton: React.FC<Props> = ({ title })
<h1l>Welcome to my app</hl> handleClick =
<MyButton title="I'm a button" /> console.log("clicked");
</div> -
)s

onClick={handleClick}>{title

1 JhE

export default MyButton;

TS for Beginner

"use client”;

import React from "react";

type Result = "pass" | "fail";
type =1]2]5]| 8;
type numberArray = Array<number>;

numberArray = [18, 5,

-71;

interface Person {
firstName: string;
lastName: string;

single: boolean; const handleClick = () => {

console.log("clicked");
¥ console.log(id);
console.log(cal(5, 7));

const Person = { }s
firstName: “Win",)
N N return (
lastName: “"Vong",

single: true,
1

button onClick={handleClick

IE

MyButton.defaultPreps = {
title: "Win",
id: 15,

1

export default MyButton;

button onClick={() => verifyFn("fail")

title

interface Props {

title: string;
id?: number;
test: (item:
Item: {

L

string) => void;

name: string;
price: number;

-
L.

J 2
person: Person;
car: string[];

const MyButton: React.FC<Props> = ({ title, id }) => {

const verifyFn = (result: Result) =>
if (result === "fail"

r
4

L

console.log("failed");

("

const cal = (a: number, b: number): number => -
return a + b;

string | string[]):

const getLength = (obj:
return obj.length;

number => {

1.
>

title button

button

Event

OnCIiCk import React from "react"”;

const : React.FC =

const handleClick = () =>
alert("Button clicked!"™);

button>;

button onClick={handleClick}>Click me

return

}s

OnscrO" import React from "react";

const : React.FC = () => {
st handleScroll = () =>

constT

console.log("Scrolled");

-

I3
:j-'-..

return <div onScroll={handleScroll}>Scroll me

};

Event

onChange
import React, { useState } from "react";

constT

const [inputValue, setInputValue]

R : React.FC = () => {
= useState("");

const handleInputChange = (event: React.ChangeEvent<HTMLInputElement>)
setInputValue(event.target.value);

J 2

return <input type="text" value={inputValue} onChange={handleInputChange}

};

Event

onSubmit

import React from “"react”;

const : React.FC = () => {
const handleSubmit = (event: React.FormEvent<HTMLFormElement:>)
event.preventDefault();
alert("Form submitted!"™);

return (
form onSubmit={handleSubmit

button type="submit">Submit</button
form

Event

onMouseOver / onMouseOut

import React from "react";

React.FC
handleMouseOver = ()
console.log("Mouse over");

constT
constT

.
L=
4 &

const handleMouseQut = () =>
console.log("Mouse out");

L=
J ¥

return (
div onMouseOver=
Hover over me
div

handleMouseOver

onMouseQut={handleMouseQut

Event
onKeyDown / onKeyUp / onKeyPress

import React from "react";
: React.FC = () => {

console.log("Key down:", event.key);

L.
J >

y

const handleKeyUp = (event: React.KeyboardEvent<HTMLInputElement>)

console.log("Key up:"”, event.key);

1.
J &

const handleKeyPress = (event: React.KeyboardEvent<HTMLInputElement>) => {
console.log("Key pressed:", event.key);

return (
input
onKeyDown={handleKeyDown
onKeyUp={handleKeyUp
enkeyPress={handleKeyPress

placeholder="Press a key"

Event
onTouchStart / onTouchEnd

import React from "react";

const : React.FC = () => {
const handleTouchStart = () => {
console.log("Touch started”);

L=
4 &

const handleTouchEnd = () => A
console.log("Touch ended");

L=
4 ¥

return (
div onTouchStart={handleTouchStart
Touch me
div

onTouchEnd={handleTouchEnd

React component lifecycle

Initialization

setup props and state l

Mounting

[componentWillMount

4

*

v

‘ render

€ °
°

4

(componentDidMount

Updation

props

states

componentWillReceiveProps

. o

~

~/

[shouldComponentUpdate

\

J

g
'

v

v g

true ¢ * false

v

o

shouldComponentUpdate

(componentWillUpdate

‘

v

true)'(false -
v v
componentWillUpdate render

-

v

render [componentDidUpdate
: v
5
\ 4
componentDidUpdate

Unmounting

{ componentWillUnmount]

https://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/

https://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/

React Prop and State

In react components Pisy
are responsible for generating State
html. To make html generate e Eloment
dynamically we need to pass
data to our component so .
that our component can use
variables and serve dynamic
html. React Data flow

. Data Component
There are two types of data in -\D”
react props_~ pf
state (private data available in . K ,
omponen omponen

component only) ¢)ste .\D“
props (public data can be o~ g
passed to component from 4

X
outside) \/ msme mm

React Hook

Class Function
Component
Component (Using Hooks)

componentDidMount
componentDidUpdate H useEffect
componentWillUnmount

state »—b useState
ref={contentRef => ref} H

useRef

Rules of Hooks

* Only Call Hooks at the Top Level

* Don’t call Hooks inside loops, conditions, or nested
functions.

* Only Call Hooks from React Functions
* Don’t call Hooks from regular JavaScript
functions. Instead, you can:

e Call Hooks from React function components.
e Call Hooks from custom Hooks

React Hook

import { useState } from "react";

function demo() {
const [isVisible, setIsVisible] = useState(true);

return <>{isVisible && <h1>I'm visible</h1>)

export default demo;

To set its value use the dedicated function like this:

setIsVisible(false);

ReaCt HOOk https://legacy.reactjs.org/docs/hooks-reference.html

"use client”;

import { FC, useState, useEffect } from “react”;

>

terface Num {
: number;

const Counter: FC<Num> = ({ num }) => {
nst [cnt, setCnt] = useState<number>(8);
const [cntEff, setCntEff] = useState<number>(0);

useEffect(=3
document.title = “You clicked ${cnt} times”;
setCntEff(cnt);

return () => {
console.log("clean up");

Ja

)iz

cnt]);

const inc = (num: number): number => {
return num + 1;
dependency array FEITD
foettol] T
useEffect will run button onClick={() => setCnt(inc(cnt))}>Click Me</button
only one time

https://legacy.reactjs.org/docs/hooks-reference.html

React Hook Rccommendation style

const Hook: FC<Props> = ({ initHook }) =>
[count, setCount] = useState<number:
, setData] = useState(

t (num: number): number => {
return num + 1;

st dec = (num: number) => {
return num - 1;

st getData sync (url: string) => 1
t res = await fetch(url);
st dataRes = await res.json();

console.log(dataRes);
setData(dataRes);

Create

useEffect(=>

fu nction const url = "http #aapi.moc.go.th/products

try {
getData(url);
} catch (err) {
console.log("Can't fetch :", err);

Red WX rpredictable state container for JavaScript apps

! \

—>

— Dispatch

f‘[Dispatch]-\ 7’\1, Siore
Event Handler ﬁucer

A
\.)
W\

f =) — State]—/

\ Deposit $10 <)
Withdraw $10 SO

Create Page

Let’s Try

Guideline

Assemble components
into a web page

1. What is component?

2. Where are position of
components?

	Slide 1: Design & React
	Slide 2: Web Design Process
	Slide 3: Web Design Types
	Slide 4: Website Layout Types
	Slide 5: Web Component
	Slide 6: Library/Framework
	Slide 7: UI/UX Design Tools
	Slide 8: Figma
	Slide 9: React
	Slide 10: Class Component VS Function Component
	Slide 11
	Slide 12: React
	Slide 13: TypeScript
	Slide 14: TypeScript Style
	Slide 15: TS for Beginner
	Slide 16: Event
	Slide 17: Event
	Slide 18: Event
	Slide 19: Event
	Slide 20: Event
	Slide 21: Event
	Slide 22: React component lifecycle
	Slide 23: React Prop and State
	Slide 24: React Hook
	Slide 25: Rules of Hooks
	Slide 26: React Hook
	Slide 27: React Hook
	Slide 28: React Hook
	Slide 29: Redux
	Slide 30: Create Page
	Slide 31: Q & A

