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ABSTRACT
This paper describes optimal power flow based on

swarm intelligences in which the power transmission
loss function is used as the problem objective. Al-
though most of optimal power flow problems involve
the total production cost of the entire power system,
in some cases some different objective may be chosen.
In this paper, to minimize the overall power transmis-
sion losses, four decision variables are participated.
They are i) power generated from generating plants,
ii) specified voltage magnitude at control substations,
iii) tap position of tapchanging transformers and iv)
reactive power injection from reactive power compen-
sators. Swarm intelligences are wellknown and widely
accepted as potential intelligent search methods for
solving such a problem. In this paper, Genetic Al-
gorithms (GA), Particle Swarm Optimization (PSO),
Artificial Bee Colony (ABC) and Differential Evolu-
tion (DE) are employed to solve optimal power flow
problems. A 6-bus and 30-bus IEEE power systems
are used for test. As a result, all swarm intelligences
search algorithms can solve optimal power flow prob-
lems efficiently. The artificial bee colony and the dif-
ferential evolution provide results better than other
swarm intelligent techniques.

Keywords: Optimal Power Flow, Power Loss Min-
imization, Genetic Algorithm, Particle Swarm Opti-
mization, Artificial Bee Colony, Differential Evolu-
tion

1. INTRODUCTION

Optimal power flow is one of nonlinear constrained
and occasionally combinatorial optimization prob-
lems of power systems. The various algorithms for
solving such problems can be found in the literature.
The optimal power flow problem has been developed
continually since its introduction by Carpentier in
1962 [1]. It is useful to determine the goals of op-
timal power flow problems. The primary goal of a
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generic optimal power flow is to minimize the total
production cost of the entire system to serve the load
demand for a particular power system while main-
taining the security of the system operation. The
production costs of electrical power systems may de-
pend on the situation, but in general they normally
mean to the cost of generating power at each generat-
ing unit of power plants. This operation is subjected
to keep each component in the power system within
its desired operation range at steadystate. This will
include maximum and minimum outputs for gener-
ators, maximum MVA flows of power transmission
lines and transformers, as well as system bus volt-
ages within specified ranges.

It has taken over decades to develop efficient algo-
rithms for its solution because it is a very large, non-
linear mathematical programming problem. Many
different mathematical approaches have been applied
for seeking its solution. The methods discussed in
the literature use one of the following five methods
[2]. They are i) lambda iteration method as found
in economic dispatch problem solving, ii) gradient
method, iii) Newtons method, iv) linear programming
and v) interior point method. Apart from analytical
approaches, there also exist intelligent search meth-
ods.

Intelligent search methods (e.g. simulated anneal-
ing [3], genetic algorithm [4], evolutionary program-
ming [5], particle swarm optimization [6]-[9], etc)
have been recently released for the optimal power flow
problem. The genetic algorithm (GA) based solution
methods are found to be most suitable because of
their ability of simultaneous multidimensional search
for optimal solutions. They are wellknown and widely
used at the beginning period of solving the optimal
power flow problems based on intelligent search meth-
ods. However, in recently year, The ABC [10] is
applied to solve optimal power flow. For economic
dispatch problem, the results show that the ABC ap-
proach is able to obtain higher quality solutions effi-
ciently and faster computational time than the con-
ventional approaches. Also, DE [11] is applied to
IEEE 30-bus test system for solving optimal power
flow. The results reported are proficiency of method-
ology over other techniques and the DE solution give
faster convergence than other existing techniques.

This paper proposes an application of swarm intel-
ligences to solve optimal power flow problems. The
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controllable system quantities are generator MW,
controlled voltage magnitude, reactive power injec-
tion from reactive power sources and transformer tap
setting. The objective used herein is to minimize the
overall power transmission losses by optimizing the
control variables within their limits. Therefore, no
violation on other quantities (e.g. MVA flow of trans-
mission lines, load bus voltage magnitude, generator
MVAR) occurs in normal system operating condi-
tions. A six-bus [12] and IEEE 30-bus test system
are employed for test. The results obtained from var-
ious swarm intelligent techniques are compared.

This paper organizes a total of five sections. Next
section, Section two, illustrates optimal power flow
problems with corresponding mathematical expres-
sions of its objective and various practical constraints.
Section three gives the brief of four swarm intelli-
gences (GA, PSO, ABC and DE) for comparative
purposes. It also provides the algorithm procedure,
described step-by-step. Section four is the simula-
tion results and discussion. Conclusion remark is in
Section five.

2. OPTIMAL POWER FLOW PROBLEMS

2.1 Problem Formulation

The optimal power flow problem is a nonlinear op-
timization problem. It consists of a nonlinear ob-
jective function defined with nonlinear constraints.
The optimal power flow problem requires the solution
of nonlinear equations, describing optimal and/or se-
cure operation of power systems. The general optimal
power flow problem can be expressed as a constrained
optimization problem as follows.

Minimize f(x)
Subject to g(x) = 0, equality constraints

h(x) ≤ 0,inequality constraints

By converting both equality and inequality con-
straints into penalty terms and therefore added to
form the penalty function as described in (1) and (2).

P (x) = f(x) + Ω(x) (1)

Ω(x) = ρ{g2(x) + [max(0, h(x))]2} (2)

Where P (x) is the penalty function
Ω(x) is the penalty term
ρ is the penalty factor

By using a concept of the penalty method [13], the
constrained optimization problem is transformed into
an unconstrained optimization problem in which the
penalty function as described above is minimized.

2.2 Objective Function

Although most of optimal power flow problems in-
volve the total production cost of the entire power

system, in some cases some different objective may
be chosen. In this paper, the power transmission loss
function is set as the objective function. The power
transmission loss can be expressed as given in (3).

Floss =
NL∑

i=1

gi,j

{
V 2

i + V 2
j − 2ViVj cos(δi − δj)

}
(3)

Where: Vi is the voltage magnitude at bus i
Vj is the voltage magnitude at bus j
gi,j is the conductance of line i− j
δi is the voltage angle at bus i
δj is the voltage angle at bus j
NL is the total number of transmission lines
Floss is the power loss function

2.3 System Constraints

The controllable system quantities are generator
MW, controlled voltage magnitude, reactive power
injection from reactive power sources and transformer
tapping. The objective use herein is to minimize the
power transmission loss function by optimizing the
control variables within their limits. Therefore, no
violation on other quantities (e.g. MVA flow of trans-
mission lines, load bus voltage magnitude, genera-
tor MVAR) occurs in normal system operating con-
ditions. These are system constraints to be formed as
equality and inequality constraints as shown below.

1) Equality constraint: Power flow equations

PG,i−PD,i−
NB∑

j=1

|Vi||Vj ||Yi,j | cos(θi,j−δi+δj) = 0 (4)

QG,i−QD,i−
NB∑

j=1

|Vi||Vj ||Yi,j | sin(θi,j−δi+δj) = 0 (5)

Where: PGi is the real power generation at bus i
QGi is the reactive power generation at bus i
PDi is the real power demand at bus i
QDi is the reactive power demand at bus i
NB is the total number of buses
θi,j is the angle of bus admittance element

i, j
Yi,j is the magnitude of bus admittance

element i, j

2) Inequality constraint: Variable limitations

V min
i ≤ Vi ≤ V max

i (6)

Tmin
i ≤ Ti ≤ Tmax

i (7)

Qmin
comp,i ≤ Qcomp,i ≤ Qmax

comp,i (8)
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Pmin
G,i ≤ PG,i ≤ Pmax

G,i (9)

Where: V min
i , V max

i are upper and lower limits of
voltage magnitude at bus i
Tmin

i , Tmax
i are upper and lower limits of tap

position of transformer i
Qmin

comp,i, Q
max
comp,i are upper and lower limits of

reactive power source i
Pmin

G,i , Pmax
G,i are upper and lower limits of

power generated by generator i

The penalty function can be formulated as follows.

P (x) = Floss +ΩP +ΩQ +ΩC +ΩT +ΩV +ΩG (10)

Where:

ΩP=ρ

NB∑

i=1



PG,i−PD,i−

NB∑

j=1

|Vi||Vj ||Vy|cos(θi,j−δi+δj)





2

(11)

ΩQ=ρ

NB∑

i=1



QG,i−QD,i−

NB∑

j=1

|Vi||Vj ||Vy|sin(θi,j−δi+δj)





2

(12)

ΩC = ρ

NC∑

i=1

{
max(0, Qcomp,i −Qmax

comp,i)
}2

+ ρ

NC∑

i=1

{
max(0, Qmin

comp,i −Qcomp,i)
}2

(13)

ΩT = ρ

Nr∑

i=1

{max(0, Ti − Tmax
i )}2

+ ρ

Nr∑

i=1

{
max(0, Tmin

i − Ti)
}2

(14)

ΩV = ρ

NB∑

i=1

{max(0, Vi − V max
i )}2

+ ρ

NB∑

i=1

{
max(0, V min

i − Vi)
}2

(15)

ΩG = ρ

NG∑

i=1

{
max(0, PG,i − Pmax

G,i )
}2

+ ρ

NG∑

i=1

{
max(0, Pmin

G,i − PG,i)
}2

(16)

NG is the total number of generators
NC is the total number of reactive power sources
NT is the total number of transformers

3. SWARM INTELLIGENT SEARCH METH-
ODS

3.1 Genetic Algorithm (GA)

There exist many different approaches to adjust
the control parameters. The GA is well-known [14]
there exist a hundred of works employing the GA
technique to optimize the system objective in various
forms. The GA is a stochastic search technique that
leads a set of population in solution space evolved
using the principles of genetic evolution and natu-
ral selection, called genetic operators e.g. crossover,
mutation, etc. With successive updating new gener-
ation, a set of updated solutions gradually converges
to the real solution. Because the GA is very popu-
lar and widely used in most research areas where an
intelligent search technique is applied, it can be sum-
marized briefly as shown in the flowchart in figure 1
[15].

In this paper, the GA is selected to build up an
algorithm to solve optimal power flow problems (all
generation from available generating units). To re-
duce programming complication, the Genetic Algo-
rithm (GADS TOOLBOX in MATLAB [16]) is em-
ployed to generate a set of initial random parame-
ters. With the searching process, the parameters are
adjusted to give the best result.

Fig.1: Flowchart of the GA procedure

3.2 Particle Swarm Optimization (PSO)

Kennedy and Eberhart developed a particle swarm
optimization algorithm based on the behavior of in-
dividuals (i.e., particles or agents) of a swarm [17].
Its roots are in zoologists modeling of the movement
of individuals (i.e., fish, birds, and insects) within a
group. It has been noticed that members of the group
seem to share information among them to lead to in-
creased efficiency of the group. The particle swarm
optimization algorithm searches in parallel using a
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group of individuals similar to other AI-based heuris-
tic optimization techniques. Each individual corre-
sponds to a candidate solution to the problem. Indi-
viduals in a swarm approach to the optimum through
its present velocity, previous experience, and the ex-
perience of its neighbors. In a physical n-dimensional
search space, the position and velocity of individual
i are represented as the velocity vectors. Using these
information individual i and its updated velocity can
be modified under the following equations in the par-
ticle swarm optimization algorithm. The procedure of
the particle swarm optimization can be summarized
in the flow diagram of figure 2.

xk+1
i = x

(k)
i + v

(k+1)
i (17)

vk+1
1 = vk

i + αi

(
xlbest

i − x
(k)
i

)
+

βi

(
xgbest

i − x
(k)
i

) (18)

Where
x

(k)
i is the individual i at iteration k

v
(k)
i is the updated velocity of individual i at

iteration k
αi,βiare uniformly random numbers between [0,1]
xlbest

i is the individual best of individual i
xgbest is the global best of the swarm

Fig.2: Flowchart of the PSO procedure

3.3 Artificial Bee Colony (ABC)

Artificial bees colony [18-20] was proposed by
Karaboga for solving numerical optimization prob-
lems. It simulates the intelligent behavior of honey
bee swarms. In artificial bees algorithm, the colony of
artificial bees contains three groups of bees: employed
bees, and unemployed bees: onlookers and scouts.
First half of the colony consists of employed artifi-
cial bees and the second half constitutes the artificial
onlookers. The employed bee whose food source has
been exhausted becomes a scout bee. The position of
a food source represents a possible solution to the op-
timization problem and the nectar amount of a food
source corresponds to the quality or fitness of the as-
sociated solution. The number of the employed bees
is equal to the number of food sources, each of which
also represents a site, being exploited at the moment
or to the number of solutions in the population. In
artificial bees algorithm, the steps given below are
repeated until a stopping criteria is satisfied.
1) Initial phase

Initial population of artificial bee swarms is cre-
ated randomly by the following formula.

xij = xmin,j + rand(0, 1)× (xmax,j − xmin,j) (19)

2) Employed bees phase
Each employed bee determines a food source rep-

resenting a site. Each employed bee shares its food
source information with onlookers waiting in the hive
and then each onlooker selects a food source site
depending on the information taken from employed
bees. To simulate the information sharing by em-
ployed bees in the dance area, probability values are
calculated for the solutions by means of their fitness
values using the following equation.

Pj =
fiti

SN∑

j=1

fiti

(20)

fiti =
{

1
1+fi

, fi ≥ 0
1 + |fi| , fi < 0

(21)

The fitness values might be calculated using the
above definition as expressed in (21).
3) Onlooker bees phase

Onlookers are placed onto the food source sites by
using a fitness based selection technique, for example
roulette wheel selection method.
4) Scout bees phase

Every bee swarm has scouts that are the swarms
explorers. The explorers do not have any guidance
while looking for food. In case of artificial bees, the
artificial scouts might have the fast discovery of the
group of feasible solutions. In the searching algo-
rithm, the artificial employed bee whose food source
nectar has been exhausted or the profitability of the
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food source drops under a certain threshold level is
selected and classified as the artificial scout. The clas-
sification is controlled by “abandonment criteria” or
“limit”. If a solution representing a food source po-
sition is not improved until a predetermined number
of trials, then that solution is abandoned by its em-
ployed bee and the employed bee becomes a scout.
The procedure of the artificial bees algorithm can be
summarized in the flow diagram of figure 3.

Fig.3: Flowchart of the artificial beecolony

3.4 Differential Evolution (DE)

Differential Evolution (DE) [21-22] is a recently de-
veloped evolutionary computation technique. DE is
an extremely powerful yet simple evolutionary algo-
rithm that improves a population of individuals over
several generations through the operators of muta-
tion, crossover and selection for global optimization
introduced by Price and Storn. Differential evolu-
tion presents great convergence characteristics and
requires few control parameters which remain fixed
throughout the optimization process and need mini-
mum tuning. DE differs from other EA in the mu-
tation and recombination phase. Unlike stochastic
techniques such as genetic algorithm and evolution-
ary strategy where perturbation occurs in accordance
with a random quantity, DE uses weighted differences
between solution vectors to perturb the population.
It has a minimum number of EA control parameters,
which can be efficiently tuned.

DE uses a population P of size NP , composed of
floating point encoded individuals that evolve over

G generations to reach an optimal solution. Each
individual Xi is a vector that contains as many pa-
rameters as the problem decision variables D. The
population size NP is an algorithm control parameter
selected by the user which remains constant through-
out the optimization process.

PG = [XG
1 , . . . , XG

Np
] (22)

XG
i = [XG

1,i, . . . , X
G
D,i]

T , i = 1, . . . , Np (23)

The optimization process in Differential Evolution
is carried out by three basic genetic operations: Mu-
tation, Crossover and Selection. The algorithm starts
by creating an initial population of Np vectors. Ran-
dom values are assigned to each decision parameter
in every vector according to:

X0
j,i = Xmin

j + η(Xmax
j −Xmin

j ) (24)

Where:
Xmin

j and Xmax
j are the lower and upper bounds

of the jth decision parameter.
ηi is a uniformly distributed random number

within [0,1] generated a new for each value of j
X0

j,i is the jth parameter of the ith individual of the
initial population

The mutation operator creates mutant vectors X
′
i

by perturbing a randomly selected vector (Xa) with
difference of two other randomly selected vectors (Xb

and Xc)

XG
i = XG

a + F (XG
b −XG

c ), i = 1, . . . , Np (25)

Where:
Xa, Xb, Xc are randomly chosen vectors ∈

{1, . . . , Np} and a 6= b 6= c 6= i.
Xa, Xb, Xc are selected anew for each parent vec-

tor. The scaling constant (F) is an algorithm con-
trol parameter used to adjust the perturbation size in
the mutation operator and improve algorithm conver-
gence. The crossover operation generates trial vectors
(X

′′
i ) by mixing the parameters of the mutant vectors

(X
′
i) with the target vectors (Xi) according to a se-

lected probability distribution.

X
′′G
j,i =

{
X
′G
j,i , if η

′
i ≤ CR

X
′G
j,i , otherwise

(26)

The crossover constant CR is an algorithm param-
eter that controls the diversity of the population and
aids the algorithm to escape from local optima. The
new generation population is obtained by selection
operator that chooses between the trial vectors and
their predecessors (target vectors) those individuals
that present a better fitness or are more optimal ac-
cording to
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XG+1
i =

{
X
′′G
i , f(X

′′G
i ) ≤ f(XG

i ), i = 1, . . . , Np

XG
i , otherwise

(27)

This optimization process is repeated for several
generations, allowing individuals to improve their fit-
ness as they explore the solution space in search for
optimal values.

Fig.4: Flowchart of the differential evolution algo-
rithm

DE has three essential control parameters: the
scaling factor (F), the crossover constant (CR) and
the population size (NP). The scaling factor is a value
in the range (0, 2] that controls the amount of pertur-
bation in the mutation process. The crossover con-
stant is a value in the range [0, 1] that controls the
diversity of the population. The population size de-
termines the number of individuals in the population
and provides the algorithm enough diversity to search
the solution space. The procedure of the differential
evolution algorithm can be summarized in the flow
diagram as shown in figure 4.

4. SIMULATION RESULTS

To verify the effectiveness and performance of the
swarm intelligent optimization, 6-bus and IEEE 30-
bus test power systems were used for test. Informa-
tion of the 6-bus test system was given in [12]. The
simulations were performed using MATLAB software
[16]. The test was carried out by solving the opti-
mal power flow problem of the power loss objective.
Variable limits given in Table 1 were used as sys-
tem constraints. For comparison purposes, genetic
algorithm, particle swarm optimization, artificial bees
algorithm and differential evolution were applied to
solve the test system with various cases. Each method
was challenged by solving given optimal power flow
problems of 30 trials randomly. Minimum, average,
maximum and standard deviation of the 30 trial so-
lutions for the 6-bus test system obtained by each
method were evaluated and shown in Table 2. Table
3 showed the comparison of CPU time spent by each
approach. The optimal control variables obtained by
each method were shown in Tables 4 7. All test cases
were simulated by using the same computer which
was an Intelr, Core 2 Duo, 2.4 GHz, 3.0 GB RAM.

Table 1: Variable limit used for optimal power flow
for the 6-bus test system

Variable Limit
Min. Max

V1 - V6 (p.u.) 0.90 1.1
T1,T2 (p.u.) 0.90 1.1
Q1, Q2(Mvar) 0 50
PG1 (MW) 25 80
PG2 (MW) 25 80

Table 2: OPF solutions obtained by using GA, PSO
ABC and DE for the 6-bus test system

Method
Power transmission loss (MW)

Minimum Average Maximum Deviation
GA 6.7747 6.9705 7.5292 0.1521
PSO 6.7486 6.8425 7.1517 0.0759
ABA 6.7361 6.7361 6.7364 0.0001
DE 6.7361 6.7361 6.7368 0.0001

Table 3: Computational time to obtain optimal solu-
tions by GA, PSO, ABC and DE for the 6-bus system

Method
Computational Time (s)

Minimum Average Maximum Deviation
GA 6.91 8.05 9.79 0.7
PSO 17.93 136.11 516.49 93.20
ABA 7.40 7.52 7.74 0.0597
DE 3.07 3.10 3.22 0.0286

The results showed that the ABC and the DE
optimal methods gave the best power flow solution
when compared with those obtained by the GA and
the PSO. For the 6-bus test system, the average
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power loss solutions were 6.9705 MW, 6.8425MW,
6.7361 and 6.7361MW for the GA, PSO, ABC and
DE methods, respectively. However, when consider-
ing the minimum power loss, the ABC and DE were
the two methods that can find the least loss function
of 6.7361 MW. The standard deviation of the solu-
tions obtained by the GA, PSO, ABC and DE were
0.1521, 0.0759, 0.0001 and 0.0001 respectively. The
CPU times spent by each method to find the optimal
solution showed that the DE consumed the least com-
putational time effort. In addition, the DE method
gave the least power transmission loss and spent the
least computational time to reach the best solution.
As a result, the power loss of the entire system can
be improved with 65% reduction.

The voltage profile of the base case before improve-
ment was set to be lower than the specified range. Af-
ter adjust the control variables to their optimal values
the system voltage profile can be resumed to the op-
erating value within the specified range as shown in
figure 5. Table 8 showed the parameter setting of each
method used for conducting the test. Also, figure 8
gave the convergence characteristic of the solutions
obtained by using these methods.

Table 4: Optimal solution by the PSO for the 6-bus
system

Control Variables Bus Computational Time(s) OptimalMean S.D. Max. Min.

Generator (p.u.)
V1 6 1.1 0 1.1 1.1 1.1
V2 5 1.09 0.02 1.1 1.03 1.0975

PG2 5 27.9 1.6 32 25 27.3814
Reactive Power Q1 4 29.7 6 47.1 16.9 24.1667

(Mvar) Q2 1 38.6 5.7 47.9 23.7 43.1091
Transformer Tap T1 3-4 0.98 0.03 1.06 0.91 0.994

(p.u.) T2 1-2 1.02 0.03 1.07 0.97 1.0294
Computational Time (s) 136.11 93.2 516.49 17.93 131.9952

Power Transmission Loss (MW) 6.84 0.08 7.15 6.75 6.7486
Power Loss Saving(%) 65.13 - 63.55 65.61 65.61

Table 5: Optimal solution by the GA for the 6-bus
system

Control Variables Bus Computational Time(s) OptimalMean S.D. Max. Min.

Generator (p.u.)
V1 6 1.09 0.01 1.10 1.06 1.0994
V2 5 1.09 0.01 1.10 1.05 1.1000

PG2 5 29.1 3.4 42.9 25.0 25.4363
Reactive Power Q1 4 28.1 4.7 38.9 15.9 24.0278

(Mvar) Q2 1 42.5 3.5 48.7 29.7 41.9286
Transformer Tap T1 3-4 0.99 0.02 1.04 0.94 1.0044

(p.u.) T2 1-2 1.03 0.02 1.08 0.96 1.0598
Computational Time (s) 8.05 0.70 9.79 6.91 7.1468

Power Transmission Loss (MW) 6.97 0.15 7.53 6.77 6.7747
Power Loss Saving(%) 64.48 - 61.63 65.48 65.48

Table 6: Optimal solution by the ABC for the 6-bus
system

Control Variables Bus Computational Time(s) OptimalMean S.D. Max. Min.

Generator (p.u.)
V1 6 1.1 0 1.1 1.1 1.1
V2 5 1.1 0 1.1 1.1 1.1

PG2 5 27.5 0.0481 27.72 27.46 27.5
Reactive Power Q1 4 27.17 0.1356 27.65 26.84 27.21

(Mvar) Q2 1 43.07 0.1397 43.28 42.53 43.06
Transformer Tap T1 3-4 0.9965 0.0002 0.9969 0.9959 1.0351

(p.u.) T2 1-2 1.0351 0.0003 1.0356 1.0337 0.9963
Computational Time (s) 7.52 0.0597 7.74 7.40 7.49

Power Transmission Loss (MW) 6.7361 1.91 6.7364 6.7361 6.7361
Power Loss Saving(%) 65.67 - 65.67 65.67 65.67

Table 7: Optimal solution by the DE for the 6-bus
system

Control Variables Bus Computational Time(s) OptimalMean S.D. Max. Min.

Generator (p.u.)
V1 6 1.1 0 1.1 1.1 1.1
V2 5 1.1 0 1.1 1.1 1.1

PG2 5 27.49 0.0167 27.51 27.43 27.48
Reactive Power Q1 4 27.15 0.069 27.3 26.87 27.18

(Mvar) Q2 1 43.11 0.1212 43.71 42 43.12
Transformer Tap T1 3-4 0.9965 0.0001 0.9972 0.9963 0.9966

(p.u.) T2 1-2 1.0352 0.0003 1.0355 1.0338 1.0352
Computational Time (s) 3.1 0.0286 3.22 3.07 3.12

Power Transmission Loss (MW) 6.7361 0.0001 6.7368 6.7361 6.7361
Power Loss Saving(%) 65.67 - 65.67 65.67 65.67

Fig.5: Voltage profiles for the 6-bus test system

Table 8: Variable limit used for optimal power flow
for the 6-bus test system

Parameter GA PSO ABC DE
Population size(NP ) 30 30 30 30
Maximum iteration 200 200 200 200

Crossover Probability 0.85 - - 0.895
Mutation Probability 0.0058 - - -

Maximum error 1× 10−61× 10−61× 10−61× 10−6

Fig.6: Convergence characteristics of each method
for the 6-bus test system
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The second test system to verify the effectiveness
and performance of the swarm intelligences was the
standard IEEE 30-bus test power system. The test
was carried out by solving the optimal power flow
problem of the power loss objective with variable
limits used as system constraints given in Table 9.
For comparison purposes, genetic algorithm, particle
swarm optimization, artificial bee colony and differen-
tial evolution were applied to solve the test case of this
test system. Each method was challenged by solving
a given optimal power flow problem of 30 trials. Min-
imum, average, maximum and standard deviation of
the 30 trial solutions for the 30-bus system obtained
by each method were evaluated and shown in Table
10. Table 11 showed the comparison of CPU time
spent by each approach. The optimal control vari-
ables obtained by each method were shown in Tables
12 15. All test cases were simulated by using the
same computer which explained previously.

Table 9: Variable limit used for optimal power flow
for the 30-bus test system

Variable Limits
Min. Max.

V1 to V30 (p.u.) 0.9 1.1
T1 to T7 (p.u.) 0.9 1.1

Q1 to Q4 (Mvar) 0 50
Q1 to Q4 (Mvar) 15 80

Table 10: OPF solutions obtained by using GA,
PSO, ABC and DE for the 30-bus test system

Method
Power transmission losses (MW)

Minimum Average Maximum Deviation
GA 10.90 15.95 31.32 5.83
PSO 13.55 17.72 22.66 2.39
ABC 11.74 15.74 19.34 2.08
DE 10.44 10.51 11.16 0.14

Table 11: Computational time to obtain optimal
solutions by GA, PSO, ABC and DE for the 30-bus
system

Method
Power transmission losses (MW)

Minimum Average Maximum Deviation
GA 100.67 531.63 732.33 192.67
PSO 691.40 2335.84 4066.20 914.01
ABC 174.70 974.60 2366.30 542.20
DE 205.68 206.89 207.30 0.2786

The results showed that the DE-based optimal
power flow method gave the best result when com-
pared with those obtained by the GA, PSO and
ABC. For the IEEE 30-bus test system, the average
power loss solutions were 15.95 MW, 17.72 MW, 15.74
and 10.51 MW for the GA, PSO,ABA and DE, re-
spectively. However, when considering the minimum
power loss, the DE was the method that can find the

Table 12: Optimal solution by the GA for the 30-
bus system

Table 13: Optimal solution by the PSO for the30-
bus system

Table 14: Optimal solution obtained by the ABC
for the30- bus system



220 ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS VOL.9, NO.1 February 2011

least power loss function of 10.44 MW. The standard
deviation of the solutions obtained by the GA, PSO,
ABC and DE were 5.83, 2.39, 2.08 and 0.14 respec-
tively. The CPU times spent by each method to find
the optimal solution showed that the DE consumed
the least computational time effort. In addition, the
DE method gave the least power transmission loss
and spent the least computational time to reach the
best solution. As a result, the power loss of the entire
system can be improved with 60-70% reduction.

The voltage profile of the base case before improve-
ment was set to be lower than the specified range. Af-
ter adjust the control variables to their optimal val-
ues the system voltage profile can be resumed to the
operating value within the specified range as shown
in figure 9. Table 16 showed the parameter setting
of each method used for conducting the test. Also,
figure 10 gave the convergence characteristics of the
solutions obtained by using these methods.

Table 15: Optimal solution by the DE for the30-bus
system

Fig.7: Voltage profiles for the 30-bus test system

Table 16: Parameter setting of each method for the
30-bus

Algorithm GA PSO ABC DE
Population size(NP ) 30 30 30 30
Maximum iteration 500 500 500 500

Crossover Probability 0.85 - - 0.895
Mutation Probability 0.0053 - - -

Maximum error 1× 10−61× 10−61× 10−61× 10−6

Fig.8: Convergence characteristics of each method
for the 30-bus test system

5. CONCLUSION

Solution methods for solving optimal power flow
problems with the power transmission loss objective
are described in this paper. Some efficient search
methods in forms of swarm intelligences (e.g. genetic
algorithm, particle swarm optimization, artificial bee
algorithm and differential evolution) were employed.
A 6-bus test system and the standard IEEE 30-bus
power system were used for benchmarking. The re-
sults showed that a set of optimal solutions with re-
spect to the power transmission loss objective can be
efficiently solved by using the swarm intelligences As
a result, the DE and ABC methods showed satisfac-
tory performances of finding the optimal power flow
solutions. In these two test systems, the power loss
can be minimized and the power losses of the entire
network can be improved by 65% power loss reduc-
tion.
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