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Abstract

The primary purpose of this paper was based on the notion of bi--hyperideal generated by non-empty

subsets of an ordered -semihypergroups. The notion of bi-bases on was introduced and the quasi-order was defined

by the principal of bi-hyperideal. Moreover, a non-empty subset was a bi-base and it was characterized. The results

were obtained by extending the concept on -semigroup.
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1. Introduction and Preliminaries
The algebraic hyperstructure notion was
introduced in 1934 by the Freanch mathematician
Marty. The notion of two-sided base of a semigroup
was introduced by I. Fabrici [1]. The results [1] have
extended to ordered semigroups by T. Changpas and
P. Summaprab [8]. In 2017, T. Changpas and P.
Kummoon studied the notion of bi- base of a
semigroup [4] and bi-base of I'-semigroup [5]. The
main purpose of this paper is to introduce
the concept to extend the results to on bi-bases of
ordered I'-semihypergroups.
Let H be a non-empty set. A mapping
o: Hx H — P*(H) where P*(H) denotes the family
of all non-empty subsets of H. If A and B are two
non-empty subsets of H and he€ H, then we
AoB = U aobjroA={z}oA

acAbeB

denote and

Aoz = Ao{z}.

Definition 1.1 [3] Let # and ' be two non-empty

sets. H is called a T -semihypergroup. If every
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~v €T is a hyperoperation on H, zvyy C H for every
z,y € H, and for every o,8 €l and z,y,2 € H. We
have za(yBz) = (zay)Bz.

Let A and B be two non-empty subsets of H
and v € I'. We define
AYB = U ayb and AT'B = UA’yB.
vel

acAbeB

Definition 1.2 [3] An algebraic hyperstructure
(H,T,<) is called an ordered T -semihypergroup.

If (H,T) isa I -semihypergroup and (H,<) is a
partially ordered set such that for any z,y,2z € H,
z <y implies zyx < zyy and zyz < yyz. Here,
A < B means that for any a € A, there exists

b € B such that a <b, for all non-empty subsets
A and B of H.

In what follows we denote and ordered T -

semihypergroup (H,I',<) by H unless otherwise
specified.
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The purpose of this paper is to introduce the
concept of bi-bases of an ordered T -
semihypergroup and extend some of bi-bases of T -

semigroups results.

Definition 1.3 [3] A non-empty subset 4 of an
ordered TI'-semihypergroup H is called a sub I'-
semihypergroup of H if ATAC A.

Notation 1.4 [2],[6] Let K be a non-empty subset of
an ordered T -semihypergroup H. We define
(K}::{er‘xSk for some ke K} For
K ={k}, we write (k] instead of ({k}].
If A and B are non-empty subsets of H, then

we have

(1) AC(4);

@) ((A) = (A);

(3) If AC B, then (4] C(BJ;

(@) (AJT(B] C (ATB;

(5) ((A](B]] = (Ar'B]; and

6) (AJU(B]=(AUB.
Definition 1.5 [3] A sub T' -semihypergroup B of
an ordered I'-semihypergroup H is called a bi-I'-
hyperideal of H if
(i) BTHTB C B and
(i1) if a€ B,b<a for b€ H implies beB.

Lemma 1.6 Let H be an ordered T -

semihypergroup and let B, be asub T-
semihypergroup of H. Forall ic I, If NB =@,

i€l

then N B, is a sub T -semihypergroup of H.

iel

Proof. Assume that (1 B, = @. Let a,b € (1 B, for all
el

el '
i€l Since B, is a sub T -semihypergroup for all

i eI, we obtain a’ybEBl forall i€l and ~eT.

Thus aybe (B =@ Hence B is a sub I'-

icl i€l
semihypergroup of H.

Proposition 1.7 Let H be an ordered T -

semihypergroup and Bi be a bi-T' -hyperideal of H.

For each i in an indexed set I, if (B, = @, then

i€l

N B, is a bi-T -hyperideal of H.

iel
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Proof. Assume that (1 B, = @. By Lemma 1.6, we
i€l

have (1B, is a sub T -semihypergroup of H.

iel

Suppose that (1B, = @. Let a € (N B)CHT(N B,).
i€l icl

iel

We have a € b~y,hyb, for some b,,b, € B,

iel

VY, €L and h € H. Since b,b, € N B, so we

il

obtain b,b, € B, forall i€ L. Forany ie I, we have
B. is a bi-T -hyperideal of H.

Hencea € by,hv,b, C B forall ic .

Thus (N B)I'HT(N B,) € N B,. Next we show that,

iel iel i€l

if a€ N Band c € H suchthat ¢ <a, then

i€l

c€NB. Let ac B, and c € H such that c<a.

i€l i€l

Since a € N B, and B, is a bi-T -hyperideal of H

il
forall i e 1, we have ¢ € B, forall i€ I. Thus

ce€ B, forall iel Therefore (B, isa bi-T'-

icl i€l

hyperideal of H.

Notation 1.8 Let A be a non-empty subset of an
ordered T -semihypergroup H. Then intersection of
is the
smallest bi- T -hyperideal of H generated by A and

all bi-T -hyperideals of H containing A

denoted by B,(A). In particular, for A={a}, we
write B, ({a}) by B,(a).

Proposition 1.9 Let A be a non-empty subset of
an ordered T -semihypergroup H.
Then B,(A)=(AUATAUATHT A].

Proof. Let B=(AUATAUAT'HA]. It is clear that
BI'B=(AUATAUATHT AI(AU ATAU ATHT A]

C (AUATAUATHTAT(AUAT AU ATHTA)|
C(ATAUATHTA]  B.
Hence B is a sub ['-semihypergroup of H. Next,

we see that
BrHI'B=(AUATAU ATHTAITHT(AU AT A
UAT HT A]
=(AUATAUATHTA(H|IT(AUAT'A
UAT HT 4]

C (AUATAUATHTATHT(AU ATA

UATHTA)|
C (ATHT'A]
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C B, we infer that BTHI'B C B.
Clearly, If a € (AUAI'AUATHT'A] and z € H such
that z <a, then z € (AUAT'AU ATHT A]]
=(AUATAUAT'HT A]. Therefore, B is a bi-T'-
hyperideal of H containing A. Suppose that there
exists C' such that C is a bi- I" -hyperideal of H
containing A and ¢ c B. Since C isabi-T' -
hyperideal of H containing A, we have A C C,
ATHTAC CTHT'C CC and ATACCTC CC.
Hence, B=(AUATAUAT'HT'A] C C. This means
that B = C.Hence B is the smallest bi-I" -
hyperideal of H containing A. Therefore,
B, (A)=(AUATAUATHT A].

2. Main Results

In this section, we study properties of bi-
base in an ordered I'-semihypergroups.
Definition 2.1 Let H be an ordered T -
semihypergroup. A subset B of H is called a
bi- base of H
conditions:
(1) H=B,(B) (ie. H=(BUBI'BUBI'HI'B]);
(2) if A asubset of B such that H = B, (4) then

A=B

if it satisfies the two following

Example 2.2 Let H ={a,b,c,d} and T'={~,8} be

the sets of binary hyperoperations defined as follows:

and
<= {(a’a a)v(avb)v(bv b)a(c7b)7(cvc)a(c’ d)v(dv b)?(dv d)}

In[71 H is an ordered I' -semihypergroups.
Consider B, = {a} and B, = {b}, we have B, and
B, are bi-bases of H But B/ = {a,b} is not a bi-
base of H.

Lemma 2.3 Let B be a bi-base of an ordered T -
semihypereroup H and a,b € B.

If a € (®I'bUBI'HI'D], then a =b.

Proof. Assume that a € (bI'b UbI'HT'b] and suppose
that a=b. Let A= B\{a}.It is clearly seen that
ACB. Since a=1b, so be A We will show that
B, (A) = H. Clearly, B,(A) C H. Next, we show that
H C B,(A). Let z€H. By hypothesis, we have

B,(B)=H and so z € (BUBI'BUBI'HT'BJ. Since
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z € (BUBI'BUBI'HT'B], we have z <y for some
y € BUBI'BU BT HT'B. We can consider the three
following cases.
Case 1: y € B. There are two subcases to consider.
Subcase 1.1: ¥y = a. Thus
yeB\{a} =ACB,(A).
Subcase 1.2: y = a. By assumption, we have
y=a€(Ol'bUbI'HI'b] C (ATAUATHT A]
C B,(4).
Case2: y € BI'B. Hence y € byb, for some
b,b, € B. There are four subcases to consider.
Subcase 2.1: b =a and b, =a. By assumption,
so we have the following:
y €byb, = ava
COI'bUBIHTbI(I'd UBLI'HT'b)
C (BUbUBTHTB)I(bTb UbTHTb)|
= (bbb VBB b HT'b UL HTbI'bI'b U

bIHTbI'bI' HT'b)
C(ATATA'AUATATAT'HT' AU
ATHTATATAU ATHT AT AT HT A]
Y a b c d
a a {a,b} {e,d} d
b | {ab} b {e.dt d
¢ | tedt A{ed} c d
d d d d d
C(ATHT 4]
B8 a b c d
a a {a,b} {c,d} d
p | feby {ab}  {cd} d
‘ {e,d} {c,d} c d
d d d d d

C B, (4).
Subcase 2.2: b =a and b, =a. By assumption
and A= B\ {a}, we have
y €bnb, =bya C(B\ {a})I(bI'b UL HT]
C(B\ {a}J0(0I'b UBL HT'b)
C (B\{a})T()rb UBTHTD)|
= (B\{a})TbTbU(B\ {a})IbT HT |
C(ATATAU AT ATHT A
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C (AT'HT' A
CB,(4).
Subcase 2.3: b, =a and b, =a. By assumption
and A= B\ {a}, we have
y € bl’ybz = a/be
C (Bro U HTBN(B\ {a})
C (b UOI'HTOI(B\ {a}]

C (b UbTHTH)I(B {a})]

bTOI(B\ {a}) UBLHTbI(B\ {a})|
C(ATATAU AT HT AT A|
C (ATHT 4]
CB,(A).

Subcase 2.4: b = a and b, # a. By assumption
and A= B\{a}. Then y € b,
C(B\{ah)(B\{a}) = ALAC B, (4). 5
Case 3: y € BI'HI'B. Hence y € b,y,h7,b, for some
b,b, € B, 7,7, €T and h € H. There are four
subcases to consider.

Subcase 3.1: b, = a and b, = a. By assumption,
we have
y € by, hb, = ayhy,a
C (bI'b U HT T HT(bT'b UbT HT'b]
= (' UbI'HTbL(HIT(I'b UBT HI'b]

C (\PbUBTHTb)THT(bIb UBTHTD)|
— (BTbLHTBIb UBT I HUBI HT b
UBTHTGTHTbCh UGT HTGTHT

I HT]
C (ATATHTATAU AT AT HT ATHT A

UATHT ATHT ATAU ATHT ATHT
ATHT A]

C (ATHT 4]
C B,(4).
Subcase 3.2: b, = a and b, = a. By assumption
and A= B\{a}, we have
= by h,a
C (B\ {a})THT(bT'b UbT HTb]
C(B\{a}[L(HD(bI"b UL HT b]
C (B\{a)IHT(bTb UbT'HTD))|

y € byy,hb,

= (B\{a})THTOIbU (B {a})T
Hrerrb]
C (ATHTATAU ATHT AT HT A]

C (ATHT 4]
C B,(A).
Subcase 3.3: b, = a and b, = a. By assumption
and A= B\{a}, we have
y € b,y,hyb, = avhvb,
C (0T UBT HTBCHT (B \ {a})
C (bb U HTBI(HIN(B\ {a}]
C (BPbUBTHTbH)THT(B\ {a})|
— (CBIHT(B\ {a}) UbI'HTOIH
(B {a})]
C (ATATHT AU ATHTATHT A]
C (ATHT' 4]

C B,(A).
Subcase 3.4: b, = a and b, = a. By assumption
and A= B\{a}, we have
y €by,hyb, C(B\{a})FHT(B\ {a})

— ATHT A
€ B, (4).

By case 1,2 and 3 we have H C B, (A). This implies
that B, (A) = H. This is a contradiction. Therefore

a=>0.

Lemma 2.4 Let B be a bi-base of an ordered
I' -semihypereroup H and a,b,c € B. If
a € (cl'bUc'HTD] then a =10 or a=c
Proof. Assume that a € (cI'b U cI"HI'b]. Suppose that
a=b, a=c Let A=B\{a}. Since a="b and
a = ¢, we have b,c € A.

We will show that B, (4) = H. Clearly, B,(4) C H.

Let = € H, we need to prove only that H C B, (4).

Since B is a bibase of H, we have
z€(BUBIBUBIHT'B.
Since z€(BUBI'BUBI'HI'B], then z<y for

some y € BUBI'BU BT HI'B. We can consider the
three following cases.
Case 1: y € B. There are two subcases to consider.
Subcase 1.1: ¥y = a. Then
yeB\{a} =ACB,(A).
Subcase 1.2: y = a. By assumption, we have
y=a€(cI'bUcl'HT'b] C (AT AU AIHT A]
CB,(A).

15
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Case 2: y € BI'B. Then y € byb, for some b,,b, € B
and ~ € T. There are four subcases to consider.
Subcase 2.1: b = a and b, = a. By assumption,
we have
y €byb, = aya
C(cI'b U’ HIBII(cl'b U I’ HID)]
C((eI'bU ' HTD)I(cI'b U I’ HI'D)]
C (AT'HT 4]
C B, (4).
Subcase 2.2: b = a and b, = a. By assumption
and A= B\ {a}, we have
Yy €b7b, =brya C(B\ {a})T(cI'bU T HTb]
C(B\{a}l(cI'bUcl'HT'b]
C((B\{aHI(cI'b UcI'HT'D)]
C (ATHT 4]
C B,(4).
Subcase 2.3: b =a and b, # a. By assumption
and A= B\ {a}, we have
y € bbb, = anh,
C(cI'b UcCHTOI(B\ {a})
C(cI'b Uc'HTBN(B\ {a}]
C((cI'bUc'HTD)I(B\ {a})]
C (Ar'HT 4]
C B,(4).
Subcase 2.4: b = a and b, = a. By assumption
and A= B\{a}, hence
y €bab, € (B\{a})[(B\{a}) = ATAC B, (A).
Case 3: y € BI'HI'B. Hence y € b,y,h7,b, for some
b,,b, € B, v,,7, €' and h € H. There are four
subcases to consider.
Subcase 3.1: b, = a and b, = a. By assumption
and A= B\{a}, we have
y €by,hb, = ayhv,a
C(eI'bUHTBCHT(cI'b U I’ HI'D]
C((cl'bUc'HIH)I'HT(eI'b U ' HT'))]
C(ArHT 4]
C B,(4).
Subcase 3.2: b, = a and b, = a. By assumption
and A= B\{a}, we have
y €b,y,h,0, =bvhy,a
C(B\{a})lHI'(cI'b U cI"'HT'b]
C(B\{a}I(HI(cI'b U cI'HT'b)
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C((B\{a})lHT(cI'b Uc'HTD)]
C (ATHT A]
C B,(A).
Subcase 3.3: b, = a and b, = a. By assumption
and A= B\{a}, we have
Y €by,hv,b, = av,h,b,
C (cI'b U HTBTHT(B\ {a})
C (eI'b U D HTB|D(H|T(B\ {a}]
C ((Tb U HTHTHT(B\ {a})]
C (ATHT A
C B,(A).
Subcase 3.4: b, = a and b, = a. By assumption
and A= B\{a}, we have
Y €b1hb, < (B\ ()T HT(B {a})
= ATHT' A
CB,(A).
By case 1,2 and 3 we have H C B, (A). This implies
B_(A) = H. This is a contradiction. Therefore a = b.

H
To characterize when a non-empty subset of an
ordered T -semihypergroup is a bi-bases of the
ordered T -semihypergroup we need the quasi-
ordered defined as follows :

Notation 2.5 Let H be an ordered I'-

semihypergroup. For any a,b € H define a

quasi-order on H by a < b < B,(a) C B,(b).
The following examples show that the order <,

Defined above is not, ingenerl a partial order.

Example 2.6 From Example 2.2, we have that
B,(a) CB,(b) (ie, a <, b) and B,(b) C B,(a)

(ie, b<, a) but a=0b. Thus <, is not a partial

b
order on H.
If A is a bi-base of H. Then B,(A)=H. Let

z € H. Then z € B, (4) andso = € B,(a) for some

a € A. This implies B, (z) C B,(a). Hence ¢ <, a.

b
Then we conclude that:

Let B be a non-empty subset of an ordered
I' -semihypergroup H. If B is a bi-base of H, then

forany z € H there exists a € B such that z <, a.
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Lemma 2.7 Let B be a bi-base of an ordered T -
semihypereroup H. If a,b € B such that a = b,
then neither a <, b, nor b <, a.

Proof. Let a,b € B such that a = b. Suppose a <, b.
We set A= B\ {a}. Then b e A

Let € H. There exists c¢€ B such that z < ¢
There are two cases to consider. If ¢=a, then
ceA  Thus  B,(z)CB,(c) € B,(A4). Hence
H = B,(A). This is a contradiction. If ¢ = a, then
z <, b. Hence z € B, (A). There fore H = B, (A).

This is a contradiction. The case b <, a is proved

similarly.

Lemma 2.8 Let B be a bi-base of an ordered T -
semihypersroup H. Let a,b,c € B, v,,7, €' and
he H:
(1) If a € (by,cUby,cl'by,cUby,cI'HTby,c], then
a=bora=c
(2) Ifa € (by,hry,c Uby,hy,cl'by hy,c Uby iy, el HT
by,hv,cl, then a=b or a=c.
Proof. (1) Assume that
a € (by,cUby,cl'by,c Ubyc'HT'by,c] and suppose
that a = b and a=c. Let A= B\{a}. Then
ACB. Since a=b and a = ¢, we have b,c € A.
We will show that B, (B) C B, (4), it suffices to
show that B = B, (A). Let z € B. if ©# a, then
z € A Hence = € B, (A). If z=a, then by
assumption we have
z = a € (by,cUby,cl'by,c Uby,c' HT'by,c]
C(ATAUAPATATAU ATATHT AT A]
C (ATAUATHTA]

C B, (A).
Thus B C B, (A). This implies that B, (B) C B, (A).
Since B is a bi-base of H and H = B,(B)
CB,(A) CH, wehave H=B,(A). Thisis a
contradiction.
(2) Assume that
a € (by,hy,e Uby,hy,el'by hay,ec U by hy, el HT by hoy,e],
and suppose that @ = b and a = c. Let
A=DB\{a}. Then ACB. Since a=b and a =,
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we have b,c € A.We will show that B, (B) C B, (4),
if suffices to show that B C B, (A). Let z € B. If
z # a, then z € A Hence z € B,(A). If z=a,
then by assumption we have
z = a € (by,lry,c Uby hy,cl'by hry,c Uby hy,cTHT
by, ]
C(ATHTAUATHT'ATATHT'AU ATHT'ATH
TATHT 4]
C (ATHT 4]
C B,(4).
Thus B C B, (A). This implies that B, (B) C B, (A).
Since B is a bi-base of H and H = B,(B)
CB,(A) CH, we have H= B,(A). Thisis a

contradiction.

Lemma 2.9 Let B be a bi-base of an ordered T -
semihypergroups H.
(1) For any a,b,c€ B and ~, €T’ and if a=b and
a = c then a ﬁ/ e
(2)Forany a,b,c€ B, v,,v,€T and he H if a=b
and a = ¢ then agbbyzhygc.
Proof. (1) For any a,b,c€ B, v, €I' let a=b and
a = c. Suppose that a <, by,c. We have
a € B,(a) C B, (by,c)
= (by,c Uby,cI'by,c Uby, " HT by c].
Hence a € (by,c Uby,cI'by,c Uby,cT'H'by,c]. By
Lemma 2.8(1), it follows that a = b or a = ¢. This
contradicts to assumption.
(2) Forany a,b,c € B, 7,,7, €T and h e H, let
a=b and a = c Suppose that a < by,hy,c. We
have a € B, (a) C B, (by,hv,c)
= (by,hy,c Uby,hy,cl'by,hy,c U
by,hy,cLC HT by hry el
Hence a € (by,hry,cUby,hy,clby,hy,cUby,hy,cTHT
by,hvy,cl. By Lemma 2.8(2), it follows that a = b or

a = c¢. This contradicts to assumption.

The following theorems characterizes when a
non-empty subset of an ordered I' -semihypergroups
H is a bi-base of H.
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Theorem 2.10 A non-empty subset B of an
ordered T' -semihypergroups H is a bi-base if and
only if B satisfies the following conditions:
(1) Forany z € H
(1.1) there exists b € B such that x <, b; or
(1.2) there exists b,b, € B and ~ €T such
that = <, b~b,; or
(1.3) there exists b,,b, € B,h€ H and

7, €T such that = <, by hv,b,.
(2) Forany a,b,cc€ B and ~, €T" if a=b and
a=c then a g’ e
(3) Forany a,b,c € B,y,,v, €T and heH if a=b
and a = ¢ then agbb%h'ysc.

Proof. Assume that B is a bi-base of H. Then
H = B, (B). To show that (1) hold.

Let z e H. Then ze(BUBI'BUBI'HI'B]. Since
z € (BUBIBUBIHIB], we have z <y, for some
y € BUBI'BUBT'HI'B. We can consider the three
following cases.

Case 1: ye B. Thus y =15 for some be B. This
implies B, (y) C B, (b). Hence y <, b. Since z <y for
some y € B, (b), we have z € B, (b). We will show
that B, (z) C B,(b).

Consider
zUzlzUal'HT'z C B, (b)U B, (b)'B,(b)U B, (b)

THTB, (b)
= (bUBTH UBTHTb] U (b UBI'b U
BUHTBI(b UbTb UBT HT'b)U
(bUBD UBTHTBDHT(b U
bI'b UBI'HT'b)]
C (bUBT'b UBTHT'b]
=B, ().
Then we have B, (z) = (zUal'z Uzl HT'z]
< (B,() = B,0).

This implies that B, (z) C B, (b). Hence = <, b.

Case 2: y € BI'B. Then y € byb, for some
b,b, € B and ~ € I. This implies that
B,(y) € B, (b,). Hence y <, brb,. Since z <y

for some y € B, (b0,), we have = € B, (bD,).

We will show that B, (z) C B, (bb,). Consider
zUalz U2l HTz € B, (bah,) U B, (b7, )I'B,, (bb,)
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UB, (bh,)THT B, (bb,)
C (byb, Ubb,Ib b, Ub b THT
byb,]
= B, (b7b,).
Then we have B, (z) = (zUal'z Ual' HI'z]
C (B, (bb,)] = B, (530,
This implies B, (z) C B, (b4b,). Hence z <, b,
Case 3: y € BTHI'B. Then y € by,hv,b, for some
b,b, € B, 7,7, €' and h € H. This implies that
B, (y) C B, (b,y,h,b,). Hence y <, by,hy,b,. Since
z <y for some y € B, (b,7,hv,b,), we have
z € B, (b,y,h,b,). We will show that
B, (z) C B, (by,h,b,). Consider
zUalzUal'HT 'z C B, (byy,hy,b,) U B, (b,y,h,b,)

B, (byy,hy,b,) U B, (b,y,h,0,)

4

LHT B, (byy,hy,b,)

4

C (b1, hrvb, Ubyy hypb Tbyy by b

4

Ub,y,hy,b, T HL by hy,b, ]
= B, (b,y,h,b,)-

Then we have B, (z) = (zUal'z UaT HT'z]

C (B, (b1,h1,0,)]

= B, (b1 hb,)-
This implies that B, (z) C B, (b,y,h,b,). Hence
r <, by,hyb,. The validity of (2) and (3) follows
from Lemma 2.9(1) and Lemma 2.9(2) respectively.

Conversely, assume that (1), (2) and (3) are

hold. We will show that B is a bi-base of H. To
show that B, (B) = H. Clearly B,(B)C H. By (1)
H C B,(B).Hence H = B,(B). It remains to show
that B is a minimal subset of H, with the property
H = B, (B). Suppose that H = B, (A) for some
AC B. Since AcC B, there exists b€ B\ A Since
be BCH=DB,(A) and b ¢ A, it follows that
be (AAUATHT A]. So we have b <y for some

ye€ ATAU ATHT A. We can consider the two
following cases.

Case 1: y € ATA. Then y € a,ya, for somea,a, € A
and v € I.Then a,,a, € B. Since b ¢ A, we have

b= a, and b= a,. Since y € aa,,
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We have y <, ava,. Since b <y for some
y € B, (aa,), we have b€ B, (aya,). We will
show that B, (b) C B, (a,a,). Consider
bUMI'bUBIHTY C B, (a,va,)U B, (aya,)l’
B, (aya,)U B, (aya, )l HT
B, (ava,)
C (a,ya, Uaya,l'aya, Uaya,
I'HTaya,]
= B, (aya,).
Then we have B, (b) = (bUbI'b UbI'HT'b]
C (B, (a70,)] = B, (a7a,).
This implies that B, (b) C B, (a,ya,). Hence
b <, aya,. This contradicts to (2).
Case 2: y € ATHT'A. Then y € a,y,hv,a, for some
a,a, €A, v,7, €' and h € H. Since b ¢ A4, we
have b =a, and b= a,. Since AC B, a,,a, € B.
Since y € a,v,h,a,, so B,(y) C B, (a,y,hy,a,)
Hence, ¥y <, agfylh%%. Since b <y for some
y € B, (a,y,h,0,), we have b€ B, (a,,hv,a,). We
will show that B, (b) C B, (a,y,hv,a,). Consider
bUMLb UM HTb C B, (a,y,hy,0,)U B, (a,,hv,a,)
I'B,(a,y,hv,a,)U B, (a,y,hv,a,)
IHTB, (a,y,hv,a,)
C (a,y,hv,a, Ua,y,hy,a ey hya,
Uasfy]h’yz%FHFagfy]h'yzaJ
= B, (a,y,h,0,).
Then we have B, (b) = (bUbT'b UbTHT}]
< (B, (a,7,h,0,)]
= B, (a,,h,a,).
This implies that B, (b) C B, (a,y,hv,a,). Hence
b <, ay,hv,a,. This contradicts to (3). Therefore B
is a bi-base of H.

Theorem 2.11 Let B be a bi-base of an ordered
I' -semihypergroup H. Then B is a sub T'-
semihypereroup of H if and only if B satisfies the
conditions b € bBc or c € bBe, for any b,c € B and
g el.
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Proof. (=) Assume that B isasub I'-
semihypergroup of H. Suppose that b ¢ 3¢ and
c & bBe. Let aebBe. Thus a=0b and a=c.
Consider a € bBec C (bBc UbBel'bBe UbBel’ HT'bc).
By Lemma 2.8(1) we have ¢ =b or a = c. This is
contradiction.

(<) Assume that b € b3c or ¢ € b3c for
any b,c € B. Let a € BI'B. Thus a € b3c for some
b,c € B. Since a € (bBec UbBcl'bBe UbBcI’HT'bfc],
by Lemma 2.8(1) we have a =b or a = ¢. Hence
a € {b,c} C B. Therefore B isasub I'-
semihypergroup of H.

3. Conclusions

In this reseach, we introduced and studied
some properties of bi-bases of ordered T -
semihypergroups. We proved that a non-empty
subset B of an ordered I'-semihypergroup of H
is a bi-base of H if and only if B satisfies the two
following conditions (1) H = B, (B)
(ie.H=(BUBTBUBTHTB); (2) if A asubset of
B such that H = B, (A) then A= B. Also we

prove that let B be a non-empty subset of an
ordered I'-semihypergroup H. If B is a bi-base of
H, then forany z € H there exists a € B such

that z <, a. and for any two distinct elements
a,b € B such that a = b, then neither a <, b, nor
b <, a. Finally, Let B be a bi-base of an ordered

I' -semihypergroup H. Then B isasub I'-
semihypergroup of H if and only if B satisfies the
conditions b € b3c or ¢ € b3c, forany b,c € B and
Berl.
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