ผู้วิจัย

Wichayaporn Jantanan,Sruangsuda Kongkratok and Atirach Rodcha

บทคัดย่อ

In this paper, as a further generalization of ideals, we introduce the notion of bi-quasi-interior ideals as a generalization of bi-ideal, quasi ideal, interior ideal, bi-interior ideal and bi-quasi ideal of ordered semigroup and study the properties of bi-quasi-interior ideals of ordered semigroup.

บรรณานุกรม

I) G. Birkhoff. (1967). Lattice theory. New York: Amer. Math. Soc. Coll. Publ., Vol. 25, Providence. [2] M. M. K. Rao. (2018). A study of a generalization of bi-ideal quasi ideal an interior ideal of semigroup. Mathematica Moravica, Vol. 22, p. 103-115. [3] N. Kehayopulu, J. S. Ponizovskii, and M. Tsingelis. (2002). Bi-ideals in ordered semigroou and ordered groups. J. Math. Sci., New York. Vol. 112, No. 4. [4] N. Kehayopulu. (1999). Note on interior ideals, ideal elements in ordered semigroups. Scientiae Mathematicae, Vol. 2, No. 3, p. 407-409. [5] N. Kehayopulu. (1998). On completely regular ordered semigroup. Sci Math, 1, p. 27-32. 6] N. Kehayopulu and M. Tsingelis. (2002). On left regular ordered semigroups. Southeast Asian Bull. Math, 25, p. 609-615. [7] N. Kehayopulu. (2015). Remark on quasi-ideal of ordered semigroup. PU. M. A. Vol. 25, no. 2, [8] R. Chinram and W. Yonthanthum. (2019). On the regularily-preserving element in regular ordered scmigroup. Intemational Journal of Mathematics and Computer Science, No. 3, p. 729-736. 0 Suthin Thongrak and Aiyared Iampan. (20018). characterizations of ordered semigroups by the properties of their ordered (m,n) Quasi ideals. Palestine Journal of Mathematics, Vol. 7 (1). [10] Y. Yin and H. Li. (2008). The characterization of regular and intra-regular Semigroups. Ital J. Pure Appl. Math, 24, p. 41-52.

ไฟล์แนบ

pdf กลุ่ม-3-วิทยาศาสตร์-52-2-1-153-162

ขนาดไฟล์ 1 MB | จำนวนดาวน์โหลด 78 ครั้ง

ความคิดเห็น